发布网友 发布时间:2023-12-18 17:19
共1个回答
热心网友 时间:2024-03-08 00:55
五年级鸡兔同笼用方程解如下:
鸡兔同笼的最简单方法有列表法,假设法,方程法,抬脚法,砍足法。
1、列表法
这一种方法是根据一共有八个头,然后列出九种不同的情况分别算出每种情况对应多少条腿,然后找出正确答案。这种方法的优点就是说能够通过列表把所有的情况都找出来。
2、假设法
这种方法就是假设,全是鸡或者假设全是兔。因为一只鸡有两条腿,一只兔有四条腿,所以假设全是鸡,那么总腿数就会比实际的要少,少出来的那一部分正好是兔子的腿,因为一只兔子少了两条腿,所以就可以求出兔子的质数,然后再求出鸡的只数。
3、方程法
可以先假设鸡有x只,那么兔子就是35-x只,然后再根据它们的腿数列出方程求出x。同样道理也可以先假设兔子有x只。
4、抬脚法
第一次一只动物抬一只脚,这样就抬35只脚,还剩59只脚,第二次继续再抬一只脚,这样还剩24只脚,这样剩下的就是兔子的脚,然后求出兔子的只数,最后再求鸡的只数。
5、砍足法
把每一栋我都开两只脚,这样的话,94只脚就能够砍47只,然后比35多出来12只,也就兔子的只数。
这一问题的本质是一种二元方程。如果教学方法得当,可以让小学生初步地理解未知数和方程等概念,并锻炼从应用问题中抽象出数的能力。一般在小学四到六年级时,配合一元一次方程等内容教授。
同一本书中还有一道变题:今有兽,六首四足;禽,四首二足,上有七十六首,下有四十六足。问:禽、兽各几何?答曰:八兽、七禽。题设条件包括了不同数量的头和不同数量的足。