问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

是否能用初中知识证明x^3+y^3=z^3无正整数解

发布网友 发布时间:2023-12-27 16:20

我来回答

5个回答

热心网友 时间:2024-07-15 01:04

Solving x^3 + y^3 + z^3
Date: 02/22/2003 at 08:06:53
From: Martin
Subject: Solving x^3 + y^3 + z^3

Given: x + y + z = 0; x * y * z = 2; x,y,z are not equal to each
other; x,y,z all real numbers.

Solve for x^3 + y^3 + z^3

When doing the algebra, what to do with the terms with x^2, y^2, or
z^2 ?

I start off with (x + y + z) = 0; therefore (x + y + z)^3 = 0.
Multiplying out yields x^3 + y^3 + z^3 + 3x^2y + 3x^2z + 3y^2x +
3y^2z + 3z^2x + 3z^2y + 6x*y*z. I keep the x^3, y^3, and z^3 on the
same side of the equals sign. I can then solve for their sum. On the
other side, with ease I substitute 2 into the 6x*y*z = 6*2.

The problem is what to do with the terms such as x^2y or y^2x, etc.
I have tried every way of factoring hoping to be left with something
I can work with. I also tried substituting in from (x + y + z) = 0 and
x * y * z = 2. The factoring and substitution did not yield anything I
can use. Is there a trick to dealing with the terms such as y^2z or
did I take the wrong approach from the beginning?

--------------------------------------------------------------------------------

Date: 02/22/2003 at 15:29:18
From: Doctor Greenie
Subject: Re: Solving x^3 + y^3 + z^3

Hi, Martin -

(1) Your approach to the whole problem is exactly on target.
(2) Yes, there IS a trick - a really cool trick! - for dealing with
the terms such as x^2y.

We have

0 = (x+y+z)^3 = (x^3+y^3+z^3)+3(x^2y+x^2z+xy^2+y^2z+xz^2+yz^2)+6xyz

and so

x^3+y^3+z^3 = -3(x^2y+x^2z+xy^2+y^2z+xz^2+yz^2) - 6xyz
= -3(x^2y+x^2z+xy^2+y^2z+xz^2+yz^2) - 12

Now our task is to evaluate the expression

x^2y+x^2z+xy^2+y^2z+xz^2+yz^2

To do this, let's start by grouping terms and factoring so that there
are no "squared" terms left:

x^2y+x^2z+xy^2+y^2z+xz^2+yz^2
= x(xy+xz) + y(xy+yz) + z(xz+yz)

And here comes the trick....

In this factored form, if we could get the three expressions in
parentheses to be identical, then we would have

x(...) + y(...) + z(...) = (x+y+z)(...) = 0(...) = 0

So let's add some terms (and then subtract those same terms) to do
exactly that:

x^2y+x^2z+xy^2+y^2z+xz^2+yz^2
= x(xy+xz) + y(xy+yz) + z(xz+yz)
= x(xy+xz+yz-yz) + y(xy+yz+xz-xz) + z(xz+yz+xy-xy)
= x(xy+xz+yz) + y(xy+xz+yz) + z(xy+xz+yz) - x(yz) - y(xz) - z(xy)
= (x+y+z)(xy+xz+yz) - 3xyz
= 0(xy+xz+yz) - 3(2)
= 0 - 6
= -6

And then we are done:

x^3+y^3+z^3 = -3(x^2y+x^2z+xy^2+y^2z+xz^2+yz^2) - 6xyz
= -3(x^2y+x^2z+xy^2+y^2z+xz^2+yz^2) - 12
= -3(-6) - 12
= 18 - 12
= 6

I hope all this helps. Please write back if you have any further
questions about any of this.

- Doctor Greenie, The Math Forum
http://mathforum.org/dr.math/

--------------------------------------------------------------------------------

Date: 02/22/2003 at 16:35:53
From: Martin
Subject: Thank you (solving x^3 + y^3+z^3)

Dr. Greenie,

In the trick in the factoring that you demonstrated to me and I
missed, it is evident what a beautiful subject math is!

Thank you very much for your trouble. Both you and the whole Dr. Math
group should NEVER be taken for granted.
Best wishes,
Martin

热心网友 时间:2024-07-15 01:04

x^3+y^3=z^3

先假设x,y,z互素,若不然则约简为互素
得(x+y)(x^2-xy+y^2)=z^3
若x+y<z那么x^2+2xy+y^2 < z^2所以x^3+y^3<^3与x^3+y^3=z^3矛盾
所以x+y>z
所以z|(x+y)=>z|(x^2+2xy+y^2)
并且z|(x^2-xy+y^2)
由上面可以得出z|3xy =>z|xy
所以z|(x-y)^2 =>z|(x-y)
结合z|(x+y)得
z|x,z|y
这与x<z,y<z矛盾,所以x^3+y^3=z^3无正整数解

热心网友 时间:2024-07-15 01:05

证明不了。这个是费尔马大定理。不光初中、高中无法证明,就连一般大学生也不会。这个要用到很多高等数学思想的。。

热心网友 时间:2024-07-15 01:05

能 既然这个等式成立,那么它适用于任意整数,就像X+Y=3 适用于任意整数,令X为任一整数如1,同样可令Y为2,再将x^3+y^3 算出来, 再开立方,是整数,就成立, 这个题就是要认识到定义域无*,X与Y适用于任意整数,

热心网友 时间:2024-07-15 01:06

应该不能吧

例:
X=3,Y=1,Z=4

3*3+1*3=4*3
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
我爱我校征文800字 建行聚财宝少一万时5小时内补上会怎样 咪哩乡文化教育 咪哩乡基础设施 咪哩村云南省玉溪市元江县咪哩乡咪哩村 咪哩乡历史文化 元江咪哩中心小学怎么样? 原神 原神胡桃进阶材料是什么? 原神 原神呢胡桃材料有哪些? 原神 原神胡桃的突破材料是什么? 乐考网唐老师会计从业证可以改分是真的假的 在同一时间同一地点,量的2米长的竹竿影子长1.6米,另外量的学校旗杆影... 冬瓜、西瓜和南瓜的名称怎么来的 怎么注册第二个 注册第二个的方法 北大青鸟设计培训:学习ios开发有什么好处? 吃什么什么对皮肤好还能降血脂? 重庆北站南广场汽车站到东莞的哪个车站下呢 ...19分钟行驶42千米照这样的速度从甲站到乙站用了1.5小时甲乙两站间... ...19分钟行驶42千米照这样的速度从甲站到乙站用了1.5小时甲乙两站间... 一年内怎么改第二次 前俯后仰惊恐万状突兀森优 得物微瑕能买吗 哪些建筑工程不得采用含氯外加剂?还有哪些外加剂不得用于某些特殊工程... 郑州有没有“河南省第二实验中学”? 中国传统文化对韩国影视的影响 已知AB平行于CD,AD平行于BC,说明角A等于角C. 父母英语很差有什么方法可以帮助孩子进行正确的英语启蒙? 你好vivox9丢了,手机寻回定位的是手机还是手机卡 ...种感觉,当这种感觉已经不在时,我却还在勉强自己,这叫责 宝马x3遥控器电池型号 索尼“rx100”和“m12345”的区别是什么? 怎么在电脑中申请新的 邯郸市北硕磁铁加工有限公司怎么样? 迪安检测为什么比别的慢 第一次用学生证买票要取票吗 ...显微镜观察有丝分裂.下列叙述正确的是( )A.临时装片制备顺序_百度... 不到一年怎么改第二次 一年只能改一次吗? 我为班会献力量作文 探险小狗修改器安卓游戏高速下载 韩国留学优势 55555`` 刚刚吃多了怎么办?我在减肥啦!! 于思雨,有多少于思雨,于思雨同名同姓 相位鉴频器的基本工作原理是什么? 美版5s三网通,插电信卡什么一直无法搜索到信号 孩子的成长环境对他以后的成长会造成什么影响吗? 怎么申请第二个 暑假前一半已经虚度,如何利用好后一般把功课好好补补 索尼RX100M5A怎么样 交通事故 我主责交全险 对方次责交强险 保险公司应该怎么赔?