发布网友 发布时间:2024-03-27 04:28
共5个回答
热心网友 时间:2024-07-26 10:35
n个事件互不相容(也称互斥)其中任何一个事件的发生都将导致其他事件不能发生(可以同时都不发生;必须得有一个发生的情况称为对立),比如掷一次骰子得到点数1和6这两个事件就互不相容。显然,由于互不相容的事件有这种相关性,有P(A|B) = 0和P(B|A) = 0,一般也就不独立了。
只要A、B的概率都不为0,那么AB互不相容和AB相互独立就是不可能同时成立的关系。
仅仅从定义上看,AB互不相容,就要求A成立的时候,B不能成立;B成立的时候,A不能成立。这就说明A、B的成立,必须影响对方成立的概率。所以这时候AB不可能相互独立。
AB相互独立的时候,A成立不影响B成立的概率,因为B成立的概率不为0,所以A成立的时候,B有可能成立;即AB可以同时成立。所以这时候AB不可能互不相容。
互斥事件与独立事件的不同点大致有如下三点 :
第一 、针对的角度不同.前者是针对能不能同时发生 ,即两个互斥事件是指两者不可能同时发生 ;后者是针对有没有影响,即两个相互独立事件是指一个事件发生对另一个事件发生的概率没有影响(注意:不是一个事件发生对另一个事件发生没有影响 )。
第二、试验的次数不同。前者是一次试验下出现的不同事件 ,后者是两次或多次不同试验下出现的不同事件。
第三 、概率公式不 同,若A与B为互斥事件 ,则有概率加法公式 P(A+B)=P(A)+P(B),若A与B不为互斥事件 ,则有公式P(A+B)=P(A)+P(B)-P(AB);若A与B为相互独立事件 ,则有概率乘法公式P(AB)=p(A)P(B)。
热心网友 时间:2024-07-26 10:36
n个事件互不相容(也称互斥)其中任何一个事件的发生都将导致其他事件不能发生(可以同时都不发生;必须得有一个发生的情况称为对立),比如掷一次骰子得到点数1和6这两个事件就互不相容。显然,由于互不相容的事件有这种相关性,有P(A|B) = 0和P(B|A) = 0,一般也就不独立了。
只要A、B的概率都不为0,那么AB互不相容和AB相互独立就是不可能同时成立的关系。
仅仅从定义上看,AB互不相容,就要求A成立的时候,B不能成立;B成立的时候,A不能成立。这就说明A、B的成立,必须影响对方成立的概率。所以这时候AB不可能相互独立。
AB相互独立的时候,A成立不影响B成立的概率,因为B成立的概率不为0,所以A成立的时候,B有可能成立;即AB可以同时成立。所以这时候AB不可能互不相容。
扩展资料:
1、P(A∩B)就是P(AB)
2、若P(A)>0,P(B)>0则A,B相互独立与A,B互不相容不能同时成立,即独立必相容,互斥必联系.
设A,B,C是三个事件,如果满足P(AB)=P(A)P(B),P(BC)=P(B)P(C),P(AC)=P(A)P(C),P(ABC)=P(A)P(B)P(C),则称事件A,B,C相互独立。
更一般的定义是,A1,A2,……,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…任意n个事件的积事件的概率,都等于各个事件概率之积,则称事件A1,A2,…,An相互独立。
参考资料来源;百度百科-相互独立
热心网友 时间:2024-07-26 10:39
互不相容指的是P(A∩B)=0热心网友 时间:2024-07-26 10:42
n个事件互不相容(也称互斥),指其中任何一个事件的发生都将导致其他事件不能发生(当然也可以同时都不发生;必须得有一个发生的情况称为对立),比如掷一次骰子得到点数1和6这两个事件就互不相容。显然,由于互不相容的事件有这种相关性,有P(A|B) = 0和P(B|A) = 0,一般也就不独立了。热心网友 时间:2024-07-26 10:43
n个事件互不相容(也称互斥),指其中任何一个事件的发生都将导致其他事件不能发生(当然也可以同时都不发生;必须得有一个发生的情况称为对立),比如掷一次骰子得到点数1和6这两个事件就互不相容。显然,由于互不相容的事件有这种相关性,有P(A|B) = 0和P(B|A) = 0,一般也就不独立了。