发布网友 发布时间:2024-03-25 10:37
共1个回答
热心网友 时间:2024-03-25 16:51
斜边相等的直角三角形中,以等腰直角三角形的面积和周长最大。
解:首先证明面积最大的是它
将等腰Rt△ACB,任意Rt△AC'B都画出外接圆,AB为圆的直径.(其实这样做是为了满足斜边AB相等,且是直角三角形).再做CF⊥AB,C'F⊥AB.(蓝色辅助线)
由三线合一可知O和F重合,且易证OC>C'F'(根据垂径定理和直径是最长的弦得到).
而CF是△ABC的高,C'F'是△ABC'的高,由面积公式可知等腰Rt△ABC面积最大.
其次解:证明周长最大的还是它
延长BC到E,使CE=CA.延长BC'到D,使C'D=C'A.连接DE,AD,AE.
∵AC'⊥BD,AC⊥BE
∴△AC'D,△ACE都是等腰直角三角形
∴∠AEB=∠ADB=45°
∵D,E在线段AB同侧
∴ABED四点共圆
∵AC=BC=CE
∴∠EAB=90°(直角三角形斜边中线定理逆定理)
∴∠EDB=90°
∴BE>BD
又∵EB=AC+CB. BD=AC'+C'B.
∴AC+CB>AC'+C'B.
∵Rt△ACB周长=AB+(AC+CB).
Rt△AC'B周长=AB+(AC'+C'B).
∴等腰Rt△ABC周长最大