怎样判断一个向量组是否为基础解系?
发布网友
发布时间:2024-03-25 22:32
我来回答
共1个回答
热心网友
时间:2024-10-22 17:47
特征多项式 有了,则-1 1 1是A的三个特征值,-3 -1 -1就是A-2E的特征值,行列式为(-3)×(-1)×(-1)=-3。
由题知a1 a2 a3是基础解系,与基础解系等价的任一向量组也是基础解系。B中前两个向量之和是第三个,线性相关。C中三个向量之和是0,线性相关。D中第一个向量减去第二个向量+第三个向量是0,线性相关。只有A中三个向量是无关的,是基础解系。
(A^2-4E)=[(A+2E)(A-2E)]^(-1)=(A-2E)^(-1)(A+2E)^(-1),因此乘后得(A+2E)^(-1)