发布网友 发布时间:2023-06-17 21:00
共1个回答
热心网友 时间:2024-10-18 05:06
结构方程参数求解的目标是确定变量之间的关系。
结构方程模型是社会科学研究中的一个非常好的方法。该方法在20世纪80年代就已经成熟。“在社会科学以及经济、市场、管理等研究领域,有时需处理多个原因、多个结果的关系,或者会碰到不可直接观测的变量(即潜变量),这些都是传统的统计方法不能很好解决的问题。
20世纪80年代以来,结构方程模型迅速发展,弥补了传统统计方法的不足,成为多元数据分析的重要工具。结构方程式模型假定在一组潜在变量中存在因果关系,这些潜在变量可以分别用一组可观测的变量表示。
优点
1、同时处理多个因变量
结构方程分析可同时考虑并处理多个因变量。在回归分析或路径分析中,就算统计结果的图表中展示多个因变量,其实在计算回归系数或路径系数时,仍是对每个因变量逐一计算。
2、容许自变量和因变量含测量误差
态度、行为等变量,往往含有误差,也不能简单地用单一指标测量。结构方程分析容许自变量和因变量均含测量误差。变量也可用多个指标测量。用传统方法计算的潜变量间相关系数,与用结构议程分析计算的潜变量间相关系数,可能相差很大。
3、同时估计因子结构和因子关系
假设要了解潜变量之间的相关,每个潜变量者用我个指标或题目测量,一个常用的做法 是对每个潜变量先用因子分析计算潜变量(即因子)与题目的关系(即因子负荷),进而得到因子得分,作为潜变量的观测值,然后再计算因子得分,作为潜变量之间的相关系数。
4、容许更大弹性的测量模型
传统上,我们只容许每一题目(指标)从属于单一因子,但结构方程分析容许更加复杂的模型。例如,我们用英语书写的数学试题,去测量学生的数学能力,则测验得分(指标)既从属于数学因子,也从属于英语因子(因为得分也反映英语能力)。