问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

实数指的什么?

发布网友 发布时间:2022-04-24 04:39

我来回答

3个回答

热心网友 时间:2023-10-28 21:08

词典含义
[编辑本段]

shíshù
(一)数学名词。不存在虚数部分的复数,有理数和无理数的总称。
(二)真实的数字。【例】公司到底还有多少钱?请你告诉我实数!

基本概念
[编辑本段]

实数包括有理数和无理数。其中无理数就是无限不循环小数和开根开不尽的数,有理数就包括无限循环小数、有限小数、整数。

数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。

实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

①相反数(只有符号不同的两个数,我们就说其中一个是另一个的相反数) 实数a的相反数是-a

②绝对值(在数轴上一个数所对应的点与原点0的距离) 实数a的绝对值是:│a│=①a为正数时,|a|=a
②a为0时, |a|=0
③a为负数时,|a|=-a

③倒数 (两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a≠0)

历史来源
[编辑本段]

埃及人早在大约公元前1000年就开始运用分数了。在公元前500年左右,以毕达哥拉斯为首的希腊数学家们意识到了无理数存在的必要性。印度人于公元600年左右发明了负数,据说中国也曾发明负数,但稍晚于印度。

直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。

相关定义
[编辑本段]

从有理数构造实数

实数可以用通过收敛于一个唯一实数的十进制或二进制展开如 {3, 3.1, 3.14, 3.141, 3.1415,…} 所定义的序列的方式而构造为有理数的补全。实数可以不同方式从有理数构造出来。这里给出其中一种,其他方法请详见实数的构造。

公理的方法

设 R 是所有实数的集合,则:

集合 R 是一个域: 可以作加、减、乘、除运算,且有如交换律,结合律等常见性质。
域 R 是个有序域,即存在全序关系 ≥ ,对所有实数 x, y 和 z:
若 x ≥ y 则 x + z ≥ y + z;
若 x ≥ 0 且 y ≥ 0 则 xy ≥ 0。
集合 R 满足戴德金完备性,即任意 R 的非空子集 S (S∈R,S≠Φ),若 S 在 R 内有上界,那么 S 在 R 内有上确界。

最后一条是区分实数和有理数的关键。例如所有平方小于 2 的有理数的集合存在有理数上界,如 1.5;但是不存在有理数上确界(因为 √2 不是有理数)。

实数通过上述性质唯一确定。更准确的说,给定任意两个戴德金完备的有序域 R1 和 R2,存在从 R1 到 R2 的唯一的域同构,即代数学上两者可看作是相同的。

相关性质
[编辑本段]

基本运算

实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

完备性

作为度量空间或一致空间,实数集合是个完备空间,它有以下性质:

所有实数的柯西序列都有一个实数极限。

有理数集合就不是完备空间。例如,(1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) 是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限 √2。实数是有理数的完备化——这亦是构造实数集合的一种方法。

极限的存在是微积分的基础。实数的完备性等价于欧几里德几何的直线没有“空隙”。

“完备的有序域”

实数集合通常被描述为“完备的有序域”,这可以几种解释。

首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素 z,z + 1 将更大)。所以,这里的“完备”不是完备格的意思。

另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。

这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,R 并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。

“完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是 R 的子域。这样 R 是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。

热心网友 时间:2023-10-28 21:08

实数,是有理数和无理数的总称,数学上,实数直观地定义为和数轴上的点一一对应的数。实数可以直观地看作小数(有限或无限的),它们能把数轴“填满”。但仅仅以枚举(列举)的方式不能描述实数的全体。实数和虚数共同构成复数。

热心网友 时间:2023-10-28 21:09

除了虚数就是实数追答这个高中学的

高中的这个不难

热心网友 时间:2023-10-28 21:08

词典含义
[编辑本段]

shíshù
(一)数学名词。不存在虚数部分的复数,有理数和无理数的总称。
(二)真实的数字。【例】公司到底还有多少钱?请你告诉我实数!

基本概念
[编辑本段]

实数包括有理数和无理数。其中无理数就是无限不循环小数和开根开不尽的数,有理数就包括无限循环小数、有限小数、整数。

数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。

实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

①相反数(只有符号不同的两个数,我们就说其中一个是另一个的相反数) 实数a的相反数是-a

②绝对值(在数轴上一个数所对应的点与原点0的距离) 实数a的绝对值是:│a│=①a为正数时,|a|=a
②a为0时, |a|=0
③a为负数时,|a|=-a

③倒数 (两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a≠0)

历史来源
[编辑本段]

埃及人早在大约公元前1000年就开始运用分数了。在公元前500年左右,以毕达哥拉斯为首的希腊数学家们意识到了无理数存在的必要性。印度人于公元600年左右发明了负数,据说中国也曾发明负数,但稍晚于印度。

直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。

相关定义
[编辑本段]

从有理数构造实数

实数可以用通过收敛于一个唯一实数的十进制或二进制展开如 {3, 3.1, 3.14, 3.141, 3.1415,…} 所定义的序列的方式而构造为有理数的补全。实数可以不同方式从有理数构造出来。这里给出其中一种,其他方法请详见实数的构造。

公理的方法

设 R 是所有实数的集合,则:

集合 R 是一个域: 可以作加、减、乘、除运算,且有如交换律,结合律等常见性质。
域 R 是个有序域,即存在全序关系 ≥ ,对所有实数 x, y 和 z:
若 x ≥ y 则 x + z ≥ y + z;
若 x ≥ 0 且 y ≥ 0 则 xy ≥ 0。
集合 R 满足戴德金完备性,即任意 R 的非空子集 S (S∈R,S≠Φ),若 S 在 R 内有上界,那么 S 在 R 内有上确界。

最后一条是区分实数和有理数的关键。例如所有平方小于 2 的有理数的集合存在有理数上界,如 1.5;但是不存在有理数上确界(因为 √2 不是有理数)。

实数通过上述性质唯一确定。更准确的说,给定任意两个戴德金完备的有序域 R1 和 R2,存在从 R1 到 R2 的唯一的域同构,即代数学上两者可看作是相同的。

相关性质
[编辑本段]

基本运算

实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

完备性

作为度量空间或一致空间,实数集合是个完备空间,它有以下性质:

所有实数的柯西序列都有一个实数极限。

有理数集合就不是完备空间。例如,(1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) 是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限 √2。实数是有理数的完备化——这亦是构造实数集合的一种方法。

极限的存在是微积分的基础。实数的完备性等价于欧几里德几何的直线没有“空隙”。

“完备的有序域”

实数集合通常被描述为“完备的有序域”,这可以几种解释。

首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素 z,z + 1 将更大)。所以,这里的“完备”不是完备格的意思。

另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。

这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,R 并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。

“完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是 R 的子域。这样 R 是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。

热心网友 时间:2023-10-28 21:08

实数,是有理数和无理数的总称,数学上,实数直观地定义为和数轴上的点一一对应的数。实数可以直观地看作小数(有限或无限的),它们能把数轴“填满”。但仅仅以枚举(列举)的方式不能描述实数的全体。实数和虚数共同构成复数。

热心网友 时间:2023-10-28 21:09

除了虚数就是实数追答这个高中学的

高中的这个不难

热心网友 时间:2023-10-28 21:08

词典含义
[编辑本段]

shíshù
(一)数学名词。不存在虚数部分的复数,有理数和无理数的总称。
(二)真实的数字。【例】公司到底还有多少钱?请你告诉我实数!

基本概念
[编辑本段]

实数包括有理数和无理数。其中无理数就是无限不循环小数和开根开不尽的数,有理数就包括无限循环小数、有限小数、整数。

数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。

实数可以分为有理数和无理数两类,或代数数和超越数两类,或正数,负数和零三类。实数集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

①相反数(只有符号不同的两个数,我们就说其中一个是另一个的相反数) 实数a的相反数是-a

②绝对值(在数轴上一个数所对应的点与原点0的距离) 实数a的绝对值是:│a│=①a为正数时,|a|=a
②a为0时, |a|=0
③a为负数时,|a|=-a

③倒数 (两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a≠0)

历史来源
[编辑本段]

埃及人早在大约公元前1000年就开始运用分数了。在公元前500年左右,以毕达哥拉斯为首的希腊数学家们意识到了无理数存在的必要性。印度人于公元600年左右发明了负数,据说中国也曾发明负数,但稍晚于印度。

直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。

相关定义
[编辑本段]

从有理数构造实数

实数可以用通过收敛于一个唯一实数的十进制或二进制展开如 {3, 3.1, 3.14, 3.141, 3.1415,…} 所定义的序列的方式而构造为有理数的补全。实数可以不同方式从有理数构造出来。这里给出其中一种,其他方法请详见实数的构造。

公理的方法

设 R 是所有实数的集合,则:

集合 R 是一个域: 可以作加、减、乘、除运算,且有如交换律,结合律等常见性质。
域 R 是个有序域,即存在全序关系 ≥ ,对所有实数 x, y 和 z:
若 x ≥ y 则 x + z ≥ y + z;
若 x ≥ 0 且 y ≥ 0 则 xy ≥ 0。
集合 R 满足戴德金完备性,即任意 R 的非空子集 S (S∈R,S≠Φ),若 S 在 R 内有上界,那么 S 在 R 内有上确界。

最后一条是区分实数和有理数的关键。例如所有平方小于 2 的有理数的集合存在有理数上界,如 1.5;但是不存在有理数上确界(因为 √2 不是有理数)。

实数通过上述性质唯一确定。更准确的说,给定任意两个戴德金完备的有序域 R1 和 R2,存在从 R1 到 R2 的唯一的域同构,即代数学上两者可看作是相同的。

相关性质
[编辑本段]

基本运算

实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

完备性

作为度量空间或一致空间,实数集合是个完备空间,它有以下性质:

所有实数的柯西序列都有一个实数极限。

有理数集合就不是完备空间。例如,(1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) 是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限 √2。实数是有理数的完备化——这亦是构造实数集合的一种方法。

极限的存在是微积分的基础。实数的完备性等价于欧几里德几何的直线没有“空隙”。

“完备的有序域”

实数集合通常被描述为“完备的有序域”,这可以几种解释。

首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素 z,z + 1 将更大)。所以,这里的“完备”不是完备格的意思。

另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。

这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,R 并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。

“完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是 R 的子域。这样 R 是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。

热心网友 时间:2023-10-28 21:08

实数,是有理数和无理数的总称,数学上,实数直观地定义为和数轴上的点一一对应的数。实数可以直观地看作小数(有限或无限的),它们能把数轴“填满”。但仅仅以枚举(列举)的方式不能描述实数的全体。实数和虚数共同构成复数。

热心网友 时间:2023-10-28 21:09

除了虚数就是实数追答这个高中学的

高中的这个不难

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
泰勒公式有哪些常见形式? 空调室内风机怎样工作 什么是县级以上医院 关于聚金宝 买白银问题 平安银行个人贵金属交易业务有哪些? 网易云音乐为什么歌这么少? 公路边种的有什么花 高速路上常用的绿化花卉有那些? 公路绿化用什么花 我一键开核后顺利进入WIN7 系统,可是一开网站就重启是怎么回事,我开6... 实数概念 什么是实数?实数的定义是什么? 实数的意思? 华为怎么通话录音 华为计算器删了怎么恢复? 实数是什么? 什么是实数的定义 数学,实数是什么意思? 实数的定义 奔腾影院 久久影音 在线看电影 速度很慢 2020年河南农信社招聘什么专业的? 我的河南农信由于按错键,使用禁止使用,卸载了,怎样才能下载呢_百度问一问 实数的概念是什么,实数包括0吗 实数的概念是什么 那有免费电影 家用微型投影仪如何保养以及维护! 2020河南农信社招聘需要什么学历? 哪里能看免费青春电影? 河南农信社的发展前景怎么样?麻烦回答的具体点! 有什么网子看电影的? 实数是什么概念? 实数的概念 什么是实数?实数的概念是什么 实数是什么 自然数,正整数,整数,有理数,无理数,实数的概念分别是什么? 实数的定义是什么啊? 教师资格证面试有几次机会? 湖南教师资格证考试一年有几次? 2020年湖南省教师资*是一年两次吗?是笔试两次还是面试两次?还是都有两次? 教师资格证面试一年有几次? 教师资格证考试面试一年有几次? 教师资格证一共几次面试机会? 万王之王3D手游能在电脑上用挂机辅助吗 在电脑上怎么玩万王之王3D?下载哪个模拟器? 万王之王3D模拟器用在电脑上的人多吗? 初中没毕业能自考本科学历吗? 万王之王3window8要求配置 万王之王3D电脑版手游模拟器谁用过?觉得怎么样? 万王之王3D电脑版多开工具从哪能看到? 没有什么学历,能自考本科吗?