问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

简述数学史上的三次数学危机及其对数学发展的影响

发布网友 发布时间:2022-04-24 01:31

我来回答

2个回答

热心网友 时间:2022-07-08 08:11

三次数学危机第一次数学危机古希腊的毕达哥拉斯学派。他们认为“万物皆数”,认为数学的知识是可靠的、准确的,而且可以应用于现实的世界。数学的知识是由于纯粹的思维而获得,并不需要观察、直觉及日常经验。   毕达哥拉斯的数是指整数,他们在数学上的一项重大发现是证明了勾股定理。他们知道满足直角三角形三边长的一般公式,但由此也发现了一些直角三角形的三边比不能用整数来表达,也就是勾长或股长与弦长是不可通约的。这样一来,就否定了毕达哥拉斯学派的信条:宇宙间的一切现象都能归结为整数或整数之比。 不可通约性的发现引起第一次数学危机。第一次危机的产物—古典逻辑与欧氏几何学第二次数学危机古希腊的数学中除了整数之外,并没有无理数的概念,连有理数的运算也没有,可是却有量的比例。希腊人虽然没有明确的极限概念,但他们在处理面积体积的问题时,却有严格的*近步骤,这就是所谓“穷竭法”。它依靠间接的证明方法,证明了许多重要而难证的定理。牛顿和莱布尼兹被公认为微积分的奠基者。他们的功绩主要在于:1,把各种问题的解法统一成一种方法,微分法和积分法;2,有明确的计算微分法的步骤;3.微分法和积分法互为逆运算。由于运算的完整性和应用范围的广泛性,使微积分成为解决问题的重要工具。同时关于微积分基础的问题也越来越严重。以求速度为例,瞬时速度是Δs/Δt当Δt趋向于零时的值。Δt是零、是很小的量,还是什么东西,这个无穷小量究竟是不是零。这引起了极大的争论,从而引发了第二次数学危机。波尔查诺不承认无穷小数和无穷大数的存在,而且给出了连续性的正确定义。柯西在1821年的《代数分析教程》中从定义变量开始,认识到函数不一定要有解析表达式。他抓住了极限的概念,指出无穷小量和无穷大量都不是固定的量而是变量,并定义了导数和积分;阿贝尔指出要严格*滥用级数展开及求和;狄里克莱给出了函数的现代定义。 在这些数学工作的基础上,维尔斯特拉斯消除了其中不确切的地方,给出现在通用的ε - δ的极限、连续定义,并把导数、积分等概念都严格地建立在极限的基础上,从而克服了危机和矛盾。第三次数学危机经过第一、二次数学危机,人们把数学基础理论的无矛盾性,归结为集合论的无矛盾性,集合论已成为整个现代数学的逻辑基础,数学这座富丽堂皇的大厦就算竣工了。看来集合论似乎是不会有矛盾的,数学的严格性的目标快要达到了,数学家们几乎都为这一成就自鸣得意。英国著名数理逻辑学家和哲学家罗素(1872—1970)即宣布了一条惊人的消息:集合论是自相矛盾的,并不存在什么绝对的严密性!史称“罗素悖论”。 罗素悖论的发现,无异于晴天劈雳,把人们从美梦中惊醒。罗素悖论以及集合论中其它一些悖论,深入到集合论的理论基础之中,从而从根本上危及了整个数学体系的确定性和严密性。于是在数学和逻辑学界引起了一场轩然大波,形成了数学史上的第三次危机。第三次数学危机的产物——数理逻辑的发展与一批现代数学的产生。由于他们解决问题的出发点不同,所遵循的途径不同,所以在本世纪初就形成了不同的数学哲学流派,这就是以罗素为首的逻辑主义学派、以布劳威尔(1881—1966)为首的直觉主义学派和以希尔伯特为首的形式主义学派。这三大学派的形成与发展,把数学基础理论研究推向了一个新的阶段。三大学派的数学成果首先表现在数理逻辑学科的形成和它的现代分支——证明论等——的形成上。

热心网友 时间:2022-07-08 09:29

毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合*、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数√2 的诞生。小小√2的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。
第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。
罗素悖论与第三次数学危机
十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……”
康托尔
可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。
罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。
罗素
其实,在罗素之前集合论中就已经发现了悖论。如1897年,布拉利和福尔蒂提出了最大序数悖论。1899年,康托尔自己发现了最大基数悖论。但是,由于这两个悖论都涉及集合中的许多复杂理论,所以只是在数学界揭起了一点小涟漪,未能引起大的注意。罗素悖论则不同。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。如G.弗雷格在收到罗素介绍这一悖论的信后伤心地说:“一个科学家所遇到的最不合心意的事莫过于是在他的工作即将结束时,其基础崩溃了。罗素先生的一封信正好把我置于这个境地。”戴德金也因此推迟了他的《什么是数的本质和作用》一文的再版。可以说,这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。
危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以*来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”1908年,策梅罗在自已这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。公理化集合系统的建立,成功排除了集合论中出现的悖论,从而比较*地解决了第三次数学危机。但在另一方面,罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展等等
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
天秤男吃醋的八大表现 天秤座男生吃醋时的表现 人工授精之后注意什么 人授后需要卧床休息吗 ...经两个月没发工资了,我不想干了,老板不给钱怎么办? 新手玩《兰斯10》这款游戏的快速通关攻略是什么? 兰斯10怎么用食券快速刷SSR 兰斯10二周目7cp怎么达成 兰斯10大侵攻达成条件介绍 跳舞同手同脚叫什么来着 喷油嘴清洗机主要功能 数学的世界三大难题是什么? 天津师范大学研究生数学史专业怎么样?就业怎么样? 数学史的意义和价值 数学史是这么样的? 数学难题 大学里数学专业里有没有数学史专业。 数学史上最难动点问题,理工科博士请进! 出于需要可以用大学方法解答。 世界近代三大数学难题各是什么,内容 数学史难吗 数学三大难题,指的是什么? 2003年高考数学史上最难,当时是什么原因导致考前换试卷 数学史上三大几何难题 最难的大学数学题目 大学数学好难阿 大学数学(数学专业)怎么这么难?怎么能学好? 一岁半的宝宝喜欢吃陈皮,吃多了有没有什么影响 一岁娃可以吃陈皮粥吗 芒果西米露这款甜品,适合小孩子吃吗? 能否指点下芒果西米露怎样做好吃? 芒果西米露 用什么牛奶 还有用什么芒果好 为什么要学习数学史 求一篇大学数学史对数学分析课的影响的论文,要求字数3000左右,急用,谢谢大家了, 喝柠檬水会瘦吗 费德洛夫的M1916自动步枪 创想兵团机枪m1916a1 M1917式机枪有哪些缺点? 勃朗宁对m1917式7.62毫米机枪进行了哪些改进? 一战法国军队的单兵武器 二战中欧洲战场都用了什么轻机枪 二战时的美军步兵团到步兵连的重机枪是如何配置的? m1919机枪为什么被淘汰 东莞有什么特色小吃? 终结者3中的机枪是什么 M1919系列机枪的形成系列 东莞的特产是什么? m1919系列机枪有哪些衍生型号? M1919A6轻机枪和M1919A4重机枪的工作原理是什么? M1919A1机枪是不是和M1917机枪差不多 勃朗宁M1917式机枪是如何命名的? 二战中,勃朗宁M1919重机*和MG42重机*可以单兵携带,边跑边打吗?就像轻机*一样?