大质量恒星的演化,在哪些方面与太阳类似,又有哪些不同?
发布网友
发布时间:2023-05-25 03:01
我来回答
共1个回答
热心网友
时间:2024-07-31 19:20
大质量恒星的标准:质量超过太阳质量7-8倍及以上的恒星。
在星际空间里存在着许多稀薄的物质,主要是气体和尘埃,逐渐它们形成星云,星云中主要的物质是氢,其次是氦等。
图1.大质量恒星的生命史
随着外界扰动的推进,星云会逐步向内收缩并且*成更小的团块。这样的过程经历几次后,就会形成很多致密、密度巨大的核。由于密度巨大且能量巨大,这些核会逐步升温,而核的内部逐渐发生核聚变,没有大的变动的话,恒星就算诞生了。
图2.恒星表面温度和光度的关系
而恒星内部核聚变成为主要能源发展阶段的时候,就是恒星的主序阶段了。处于主序阶段的恒星,叫做主序星,相对稳定。
质量在太阳质量7-8倍及以上的,会逐步进入红超巨星阶段。反之,会进入红巨星阶段。
图3.红巨星生命史过程中亮度和表面温度的关系
因为恒星膨胀,能量分布密度也就随之下降。但红超巨星的半径和红巨星的差距进一步增大,就导致红巨星的表面温度下降的幅度也远不如红超巨星。能量密度下降幅度没有那么大,就导致红巨星光度急剧增加,而红超巨星并不会。
图4.大质量恒星和中小质量恒星生命史异同
大个头还是更沉稳一些,嗯。
大质量的恒星,会逐步形成轻质量元素在外、重质量元素在内的结构,核心主要是铁。再往后,核反应的速度就大幅度下降了,这就导致大质量恒星的铁核会向内坍塌,外层部分被向外抛射。这个过程时间短暂,但能量巨大,我们称之为超新星爆发过程。
爆发后,膨胀的星云会逐步形成新一代恒星的原材料。
而小质量恒星就不同了,会逐步坍缩和暗淡,直至死亡。
大约45.9亿年前,一团氢分子云迅速坍塌,形成了金牛座T星,这边是太阳的襁褓阶段。
因为太阳是黄矮星,按照计算,寿命大约在100亿年-115亿年,所以目前的太阳正处于壮年时期。
而根据超级计算机的计算结果看,太阳在红巨星阶段大约会有10亿年时间,根据第2条里提及的理论,太阳的表面光度会大幅度提升,可能会有如今的几十到上百倍。
恒星是依靠自身核聚变可以发热发光的天体(多指恒星的主序星阶段),不过由于恒星的质量大小不一,恒星自身的演化过程也很不相同。
根据自身质量的不同,恒星又可以分为很多种类,质量在太阳质量的8%到50%之间的恒星是红矮星,这是恒星的质量最小的一类,发光发热都不强,我们在地球上无法用肉眼看到任何一颗红矮星;质量在太阳的50%到80%的恒星是橙矮星,这类恒星发出的光辐射也不强,基本上也无法用肉眼看到;像我们的太阳这样的,质量在太阳的80%到140%的恒星是黄矮星,我们用肉眼能看到的夜空中的黄矮星也非常有限;以黄矮星更大一些的是蓝矮星,更大的还有巨星、超巨星和特超巨星,它们的演化方式和最终结果都是不一样的。
红矮星和橙矮星由于质量较小,内部的氢核聚变相对比较温和,因此这类星体的主序星阶段都比较长,有的红矮星寿命甚至长达万亿年,橙矮星也可以长达几百亿年,当它们内部的氢核聚变结束之后,基本上表现为一个渐渐熄灭的过程,内部也不会形成白矮星之类的天体,当其冷却下来之后,会直接形成一颗黑矮星。
像太阳这样的黄矮星,以及天狼星这样的蓝矮星,当内部的氢元素聚变燃烧得差不多的时候会发生氦闪现象,其外层物质开始向外扩散成为红巨星或者黄巨星,当其主序星阶段之后,其核心位置会形成一颗白矮星,白矮星体积不大,只有地球这么大,不过密度很高,一立方厘米的质量在100公斤到10吨之间,总质量和太阳的质量差不多,由于白矮星不再进行核聚变,所以起温度会慢慢下降,最终会成为一颗黑矮星,不过这个降温过程会长达200亿年,因此无论是红矮星和橙矮星还是黄矮星与蓝矮星,其形成黑矮星的时间都要比宇宙的年龄138亿还长,所以天文学家认为宇宙中至今还没有形成一颗黑矮星。
原始质量在太阳的8到30倍的恒星,在主序星阶段的末期会发生超新星爆发,这一时刻恒星会变得非常明亮,多数会超过整个星系的亮度,之后星体的核心形成一颗中子星,中子星的体积很小,通常只在8-30公里之间,但它的密度比白矮星更大,每立方厘米的质量约在8000万到20亿吨之间。
原始质量大于太阳30倍的恒星,到了主序星阶段的末期,也会发生超新星爆发,但是它并不会形成中子星,而是会形成黑洞,黑洞的质量通常在太阳的三倍以上。
不管大小恒星的生成都是起源于一坨巨大的分子云。分子云本身的引力会导致从弥漫状态渐渐向中心聚集,如果受到天体事件的扰动,比如超新星大爆炸、天体大碰撞等引力波的扰动,这种聚集就会加快。
随着收缩越来越紧密,中心的压力会越来越大,温度越来越高,中心的引力会越来越大,坍缩的速度成数量级加快,终于温度和压力达到了临界点,引发了这坨收缩越来越紧密巨大分子云中心的氢核聚变,一个恒星胚就诞生了。
这种中心核聚变的膨胀张力与引力巨大的压力相抗衡,会有一段拉扯过程,最终这个恒星内部的核聚变当量会与恒星的质量压力取得一个平衡,这个恒星的主序星阶段就形成了。
所有恒星的形成都大致如此。恒星的主序星阶段最长,约占恒星寿命的90%时间段。
恒星质量应该符合一定的范围,质量太大或太小都无法成为恒星。最小的恒星质量应大于太阳质量的7%,达不到这个质量,中心引力压力不足以引发核聚变,所以形成不了恒星;最大的恒星质量不超过300个太阳质量,质量太大,中心核聚变的张力和收缩的压力就很难取得平衡,恒星很难稳定下来,中心的引力抓不住外围的气体物质,质量会损失很快。
恒星的寿命与质量成反比,质量越大的恒星寿命越短,比如目前已知最大质量的恒星叫r136a1,是太阳质量的265倍,寿命只有300万年,现在已经170万岁了,还有约130万年就会寿终正寝。
我们太阳是一颗黄矮星,像太阳这样质量的恒星寿命一般在100亿年左右;而比太阳小的红矮星一般都有几百亿年到上万亿年的寿命,由于它们寿命特长,至今在宇宙中还没有发现任何垂死的红矮星。
太阳现在的年龄约50亿岁,再过约50亿年就会寿终正寝。届时太阳中心的氢元素消耗殆尽,全部聚变成了氦,氢核聚变停止,维持压力平衡的核聚变张力消失,外围的巨大压力开始急剧向中心挤压,巨大的压力导致了氦核的聚变。
这时中心热力膨胀力大大增大,巨大的热力催动了外围的气体膨胀,太阳变成一个红巨星,半径扩大了200~300倍,吞噬了水星和金星,地球或被吞噬或被烤焦。最后,中心所有的氦都聚变成了碳,聚变停止,中心急剧收缩,成为了一个只有地球大小的白矮星,重力达到每立方厘米1~10吨。
这时的引力已经不足以聚集外围的气体,这些外围的气体就渐渐飘散到太空,成为新的星云。
硝烟散尽,一个白色炽热小小的白矮星出现在深邃黑暗的太空中,然后慢慢冷却变成一个黑矮星。
比太阳质量大7倍以上的恒星,死亡后就会发生超新星大爆炸,中心残留部分会收缩为直径只有10~20千米的中子星;而大于太阳质量29倍的恒星死亡时超新星大爆炸后,中心残留部分会形成一个黑洞。
大质量天体会发生超新星大爆炸以及变成中子星或者黑洞,是因为在恒星中心完成氦核聚变成碳后,不会像太阳一样停止下来,由于其质量导致的巨大的压力,还会使核聚变一直轮换下去,一直到26号元素铁为止。由于铁特别的稳定性,聚变就停止了,巨大的压力将外围物质以接近光速的速度向中心坍缩,遇到坚硬的铁壁被同样速率反弹回来,就发生了超新星大爆炸。
这个高压高温的瞬间,会聚变产生一些更重的元素,如金银等,人间财富就是这么来的。
当留下的质量大于1.4个太阳质量时,就会压缩成一个中子星。中子星是处于中子简并态的特殊天体,中子简并压抵消掉了重力压力,所以就维持了星球的平衡。如果大爆炸后遗留的质量大于太阳的2~3倍,中子简并压就无法抵消更大的引力压力,就会继续收缩,所有物质坍缩到史瓦西半径以内,就无限的向中心那个奇点坠落,最终成了一个黑洞。
而红矮星由于质量很小,不足以引发氢核聚变完成后的氦核聚变,就不会变成红巨星,而渐渐冷却成一个黑矮星~死星。但红矮星的寿命很可能要超过宇宙寿命,它的死相如何,谁也看不到。
这就是不同质量恒星演化过程的相似点与不同点。
没研究过这种问题,但凭借一点粗浅的认识猜测一下。
相同的应该是前期过程,这里面应该是物质渐渐的聚集,等到引力足以导致核聚变开始释放能量的过程。这里应该是过程相似。
不同的应该是两点:
1、大质量恒星应该是聚集得更快,因为引力大物质多,核反应也快,所以物质消耗也快。
2、大质量的恒星在后期有可能生成比较重的元素,等到铁元素开始参与聚变,就是这个恒星死亡的开始。
小质量的恒星可能无法生成较重的元素,消耗慢,可能以恒星状态存在时间更长。个头大死得快。