着丝粒详细资料大全
发布网友
发布时间:2023-05-17 08:52
我来回答
共1个回答
热心网友
时间:2023-05-20 22:10
着丝粒是染色体中连线两个染色单体并将染色单体分为短臂(p) 和长臂(q)的结构。由于着丝粒区染色质较细、内缢,所以也称主缢痕(primary constriction),此处DNA 高度重复,为碱性染料所深染。
基本介绍
中文名 :着丝粒 外文名 :centromere 细胞 :真核生物细胞 活动 :有丝*(mitosis)和减数*( 组成 :高度重复DNA序列的异染色质
概述,位置,中间着丝,亚中间着丝,近端着丝,端着丝,结构,作用,遗传,着丝点和着丝粒,
概述
着丝粒是连线一对姐妹染色单体的特化DNA序列。有丝*时,纺锤丝通过动粒附着在着丝粒上。着丝粒主要被视为引导染色体行为的基因座。 物理功能上,着丝粒为动粒组装提供了位点。动粒是实际上负责染色体分离的一种高度复杂的蛋白质结构。当所有染色体都与纺锤体以合适的方式结合之后,结合微管蛋白并向细胞发出信号,以保证细胞的正确*。 广义上,生物中的着丝粒可以分为两种。“点着丝粒”与特定蛋白质结合,并高效的特异性识别DNA序列。在特定物种中,任何具有点着丝粒序列的DNA都通常形成着丝粒结构。点着丝粒在酿酒酵母(Saharomyces cerevisiae)中表征最为明显。“区域着丝粒”则用来描述其余的大多数着丝粒,通常在DNA上具有偏好性的区域形成。形成区域着丝粒的信号似乎是表观遗传的。大多数生物(从裂殖酵母到人类)都具有区域着丝粒。 具体在有丝*过程中,着丝粒代表一对姐妹染色单体之间接触最近的区域。当细胞进入*期后,一对姐妹染色单体沿长度方向通过黏连蛋白复合体相互连线。这种复合物被认为是在前期由染色体臂释放出的,因此当染色体排列在有丝*中纺锤体中间板上时,它们最后相连的位置在着丝粒以及附近的染色质中。
位置
着丝粒位于异染色质区内,这里富集了卫星DNA,也就是短的DNA串联重复序列。此外,在缢痕区内有一个直径或长度为400 nm左右的很致密的颗粒状结构,这称为动粒(kiochore)的结构直接与牵动染色体向两极移动的纤丝蛋白相连结。 在染色体上,着丝粒有多种可能的存在位置。一般来讲,主要的位置有中间着丝,亚中间着丝,近端着丝,端着丝。
中间着丝
着丝粒位于染色体的中心,染色体两臂几乎等长,形成"X"形状。在人类染色体组中,第1,3,16,19,20号染色体是中间着丝的。有些情况下,中间着丝通过两个近端着丝染色体的融合形成。
亚中间着丝
如果与中间着丝类似,而染色体两臂不等长,则为亚中间着丝。Y染色体是亚中间着丝的。
近端着丝
如果染色体短臂存在,但由于过短而难以观察,则成为近端着丝。人类染色体组中13,14,15,21,22号为近端着丝。在这种着丝情况下,染色体短臂(p)内仍然包含遗传物质,如核仁组织区域。
端着丝
端着丝情况下着丝粒位于染色体的末端。两条染色体的端粒从末端延伸并结合。此时染色体只有一条臂。典型例子在家鼠的染色体组中出现。 除这几种常见着丝方式以外,也存在其他组织方式。如全着丝,整条染色体都作为着丝粒区域,最知名的例子是秀丽隐杆线虫( Caenorhabditis elegans )。 无中心,此时染色体缺少着丝粒。
结构
着丝粒区域一般处于异染色质状态,这对于其对黏连蛋白复合体的招募十分重要。在这种染色质中,一般的组蛋白H3被另外的中心粒特异性蛋白(人类中为CENP-A)代替。CENP-A被认为对动粒在着丝粒上的组装起重要作用。研究发现CENP-C几乎专一地定位于结合CENP-A的染色质区域。在着丝粒区域中,对于人类,其组蛋白的主要修饰为H4K20me3和H3K9me3。 在裂殖酵母中,着丝粒异染色质的形成与RNAi有关。线上虫类,一些植物,以及半翅类,鞘翅类昆虫中,染色体主要以全着丝的形式存在,表明其不存在优先的微管蛋白结合位点。
作用
染色体
着丝粒 (centromere)的主要作用是使复制的染色体在有丝*和减数*中可均等地分配到子细胞中。在很多高等真核生物中,着丝粒看起来像是在染色体一个点上的浓缩区域,这个区域包含着丝点 (希腊语 kínesis 运动; chóros 部位),又称主缢痕。此是细胞*时纺锤丝附着之处。在大部分真核生物中每个纺锤丝附着在不同的着丝粒上。如啤酒酵母(Saharomyces cerevisiae)附着在每个着丝粒上仅一条纺锤丝。广义上说着丝粒也常指着丝点﹐然而狭义上的着丝点是将染色体和纺锤丝微管相结合的蛋白质复合体。 若着丝粒丢失了,那么染色体就失去了附着到纺锤丝上的能力,细胞*时染色体就会随机地进入子细胞。然而有着丝粒的染色体也会出现这种异常分配,那就是复制后的两个染色体拷贝并不总是正确地分离进入子细胞。在此过程中发生错误的机率通常是很低的。若发生错误会引起染色体数目的改变。如在酵母中分配发生错误的机率低于十万分之一。
遗传
由于着丝粒DNA序列并不是动物中着丝粒的关键决定因素,因此表观遗传被认为在着丝粒的特化中起关键作用。染色体*形成的子染色体会与形成其的染色体在相同的位置形成着丝粒,而与序列无关。目前假设H3组蛋白变体CENP-A是着丝粒的主要表观遗传标志。
着丝点和着丝粒
着丝点其实是现在分子生物学常说的动粒,与着丝粒是不同的。着丝粒是一种蛋白复合体,动粒(着丝点)是覆在着丝粒外面的蛋白复合体,主要负责细胞*时期牵引染色单体分离。 着丝点是高中生物学教科书常用的染色体基本结构名称。本套教科书在第1册有丝*和减数*有关细胞*中均用“着丝点”,而在第2册染色体组型分析中对染色体分类却用“着丝粒”。许多学生疑问“着丝点和着丝粒有什么区别?是不是同一结构?” 经查,着丝点为Kiochore,着丝粒为Centromere,在许多文献资料中使用不一。例如,在《细胞生物学》(1987年,高等教育出版社)中二者均有使用,刘祖洞和江绍慧的《遗传学》(1987年,高等教育出版社)中只用“着丝粒”,*农业广播电视学校教材《植物及植物生理》(修订执笔人孟繁静等,1989年,农业出版社)中只用“着丝点”。近来在电镜下观察发现的资料表明,着丝粒(染色体的主缢痕primary constriction)为染色质的结构,将染色体分成二臂,在细胞*前期和中期,把两个姐妹染色单体连在一起,到后期两个染色单体的着丝粒分开。着丝粒两侧各有一个由蛋白质构成的3层盘状特化结构,为非染色体性质物质的附加物,称为着丝点,在染色质(染色体)被碱性染料染色时,着丝点部分染色很浅或根本不染色,由于着丝点部位几乎把着丝粒覆盖,所以,染色后观察染色体的外形,在着丝点部位几乎看不到着色。着丝点与染色体的移动有关,在细胞*(包括有丝*和减数*)的前、中、后期,纺锤体的纺锤丝(或星射线)微管就附着在着丝点上,并牵引染色体移动,意即纺锤体的纺锤丝(或星射丝)直接附着在着丝点上而不是附着在染色体着丝粒上,没有着丝点,染色体不能由纺锤丝牵引移动。因此,着丝点和着丝粒并非同一结构,它们的功能也不同,但它们的位置关系是固定的,有时用着丝点或着丝粒泛指它们所在的染色体主缢痕位置是可以理解的。 根据人民卫生出版社出版的七年制临床医学教材《细胞生物学》,在两条姐妹染色单体相连处,有一个向内凹陷的缢痕,称为主缢痕(primary constriction),光镜下相对不著色。着丝粒处于主缢痕的内部,是主缢痕的染色质部位。电镜下可见主缢痕两侧有一三层结构的特化部位,称为动粒(kiochore),即着丝点。目前认为着丝粒是染色单体中一段高度重复的DNA序列,该序列不与组蛋白结合。动粒是着丝粒结合蛋白在有丝*染色体着丝粒部位形成的一种圆盘状的结构,微管与之连线,与染色体分离密切相关,每一个中期染色体有两个动粒,位于着丝粒的两侧。 动粒又叫着丝点,是附着于着丝粒上的一种细胞结构。动粒可分为内板、中间间隙、外板和纤维冠4个部分。在细胞*过程中,微管与动粒相连,牵引染色体在*中期进行染色体列队,在*后期,牵引分开的染色体分别向细胞的两极运动。 目前正在研究着丝粒结合蛋白以及其它的一些因素。一个主要的问题是解决纺锤丝附着到着丝粒的具体机制。