发布网友 发布时间:2023-05-17 10:55
共1个回答
热心网友 时间:2023-09-14 00:56
如图:
椭球:
一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是:x^2 / a^2+y^2 / b^2+z^2 / c^2=1。
公式:
椭圆体的表面积S=2*π*cd*dx的0到a的积分的2倍 =4/3ab*π
椭圆体的体积V= 4/3πabc (a与b,c分别代表各轴的一半)
三重积分:
设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为ri(i=1,2,3.....n),体积记为Δδi,记||T||=max{ri},在每个小区域内取点f(ξi,ηi,ζi),作和式Σf(ξi,ηi,ζi)Δδi,若该和式当||T||→0时的极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz。