发布网友 发布时间:2023-05-20 20:42
共1个回答
热心网友 时间:2023-09-29 20:25
一、性质不同
1、牛顿插值:代数插值方法的一种形式。牛顿差值引入了差商的概念,使其在差值节点增加时便于计算。
2、拉格朗日插值:满足插值条件的、次数不超过n的多项式是存在而且是唯一的。
二、公式意义不同
1、牛顿插值:牛顿差值作为一种常用的数值拟合方法,由于其计算简单、计算点多、逻辑清晰、编程方便等特点,在实验分析中得到了广泛的应用。
特别是在实验中,当只能测量离散数据点或用数值解表示相应的关系时,可以用牛顿插值公式拟合离散点,得到更精确的函数解析值。
2、拉格朗日插值:在许多实际问题中,函数被用来表示某些内部关系或规律,许多函数只能通过实验和观察来理解。如果实际观测到一个物理量,并在多个不同的地点得到相应的观测值,拉格朗日插值法可以找到一个多项式,它可以精确地提取每个观测点的观测值。
扩展资料:
拉格朗日插值的发现:
在数值分析中,拉格朗日插值法是由18世纪法国数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法。在数学上,拉格朗日插值法可以给出一个多项式函数,它只通过二维平面上的几个已知点。
拉格朗日插值法最早由英国数学家爱德华·华林于1779年发现,不久后(1783年)由莱昂哈德·欧拉再次发现。1795年,拉格朗日在《师范学校数学基础教程》一书中发表了这种插值方法,从此拉格朗日的名字就和这个方法联系在一起。
参考资料来源:百度百科-牛顿插值公式
参考资料来源:百度百科-拉格朗日插值法