发布网友 发布时间:2022-04-23 14:17
共3个回答
热心网友 时间:2022-05-03 01:54
大数据挖掘的算法:热心网友 时间:2022-05-03 03:12
数据挖掘本质还是机器学习算法热心网友 时间:2022-05-03 04:47
为了进行数据挖掘任务,数据科学家们提出了各种模型,在众多的数据挖掘模型中,国际权威的学术组织 ICDM (the IEEE International Conference on Data Mining)评选出了十大经典的算法。
按照不同的目的,我可以将这些算法分成四类,以便你更好的理解。
分类算法:C4.5,朴素贝叶斯(Naive Bayes),SVM,KNN,Adaboost,CART
聚类算法:K-Means,EM
关联分析:Apriori
连接分析:PageRank
1. C4.5
C4.5 算法是得票最高的算法,可以说是十大算法之首。C4.5 是决策树的算法,它创造性地在决策树构造过程中就进行了剪枝,并且可以处理连续的属性,也能对不完整的数据进行处理。它可以说是决策树分类中,具有里程碑式意义的算法。
2. 朴素贝叶斯(Naive Bayes)
朴素贝叶斯模型是基于概率论的原理,它的思想是这样的:对于给出的未知物体想要进行分类,就需要求解在这个未知物体出现的条件下各个类别出现的概率,哪个最大,就认为这个未知物体属于哪个分类。
3. SVM
SVM 的中文叫支持向量机,英文是 Support Vector Machine,简称 SVM。SVM 在训练中建立了一个超平面的分类模型。如果你对超平面不理解,没有关系,我在后面的算法篇会给你进行介绍。
4. KNN
KNN 也叫 K 最近邻算法,英文是 K-Nearest Neighbor。所谓 K 近邻,就是每个样本都可以用它最接近的 K 个邻居来代表。如果一个样本,它的 K 个最接近的邻居都属于分类 A,那么这个样本也属于分类 A。
5. AdaBoost
Adaboost 在训练中建立了一个联合的分类模型。boost 在英文中代表提升的意思,所以 Adaboost 是个构建分类器的提升算法。它可以让我们多个弱的分类器组成一个强的分类器,所以 Adaboost 也是一个常用的分类算法。
6. CART
CART 代表分类和回归树,英文是 Classification and Regression Trees。像英文一样,它构建了两棵树:一棵是分类树,另一个是回归树。和 C4.5 一样,它是一个决策树学习方法。
7. Apriori
Apriori 是一种挖掘关联规则(association rules)的算法,它通过挖掘频繁项集(frequent item sets)来揭示物品之间的关联关系,被广泛应用到商业挖掘和网络安全等领域中。频繁项集是指经常出现在一起的物品的集合,关联规则暗示着两种物品之间可能存在很强的关系。
8. K-Means
K-Means 算法是一个聚类算法。你可以这么理解,最终我想把物体划分成 K 类。假设每个类别里面,都有个“中心点”,即意见领袖,它是这个类别的核心。现在我有一个新点要归类,这时候就只要计算这个新点与 K 个中心点的距离,距离哪个中心点近,就变成了哪个类别。
9. EM
EM 算法也叫最大期望算法,是求参数的最大似然估计的一种方法。原理是这样的:假设我们想要评估参数 A 和参数 B,在开始状态下二者都是未知的,并且知道了 A 的信息就可以得到 B 的信息,反过来知道了 B 也就得到了 A。可以考虑首先赋予 A 某个初值,以此得到 B 的估值,然后从 B 的估值出发,重新估计 A 的取值,这个过程一直持续到收敛为止。
EM 算法经常用于聚类和机器学习领域中。
10. PageRank
PageRank 起源于论文影响力的计算方式,如果一篇文论被引入的次数越多,就代表这篇论文的影响力越强。同样 PageRank 被 Google 创造性地应用到了网页权重的计算中:当一个页面链出的页面越多,说明这个页面的“参考文献”越多,当这个页面被链入的频率越高,说明这个页面被引用的次数越高。基于这个原理,我们可以得到网站的权重划分。
算法可以说是数据挖掘的灵魂,也是最精华的部分。这 10 个经典算法在整个数据挖掘领域中的得票最高的,后面的一些其他算法也基本上都是在这个基础上进行改进和创新。今天你先对十大算法有一个初步的了解,你只需要做到心中有数就可以了。