发布网友 发布时间:2022-04-23 13:03
共5个回答
懂视网 时间:2022-04-15 00:57
1 K-均聚类算法的基本思想 K-均聚类算法 是著名的划分聚类分割方法。划分方法的基本思想是:给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,KN。而且这K个分组满足下列条件:(1) 每一个分组至少包含一个数据纪录;(
K-均值聚类算法是著名的划分聚类分割方法。划分方法的基本思想是:给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K K-means算法的工作原理:算法首先随机从数据集中选取 K个点作为初始聚类中心,然后计算各个样本到聚类中心的距离,把样本归到离它最近的那个聚类中心所在的类。计算新形成的每一个聚类的数据对象的平均值来得到新的聚类中心,如果相邻两次的聚类中心没有任何变化,说明样本调整结束,聚类准则函数 已经收敛。本算法的一个特点是在每次迭代中都要考察每个样本的分类是否正确。若不正确,就要调整,在全部样本调整完后,再修改聚类中心,进入下一次迭代。这个过程将不断重复直到满足某个终止条件,终止条件可以是以下任何一个: (1)没有对象被重新分配给不同的聚类。 (2)聚类中心再发生变化。 (3)误差平方和局部最小。 K-means聚类算法的一般步骤: (1)从 n个数据对象任意选择 k 个对象作为初始聚类中心; (2)循环(3)到(4)直到每个聚类不再发生变化为止; (3)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分; (4)重新计算每个(有变化)聚类的均值(中心对象),直到聚类中心不再变化。这种划分使得下式最小 K-均值聚类法的缺点: (1)在 K-means 算法中 K 是事先给定的,这个 K 值的选定是非常难以估计的。 (2)在 K-means 算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化。 (3) K-means算法需要不断地进行样本分类调整不断地计算调整后的新的聚类中心因此当数据量非常大时算法的时间开销是非常大的。 (4)K-means算法对一些离散点和初始k值敏感,不同的距离初始值对同样的数据样本可能得到不同的结果。
CV_IMPL int
cvKMeans2( const CvArr* _samples, intcluster_count, CvArr* _labels,
CvTermCriteria termcrit, int attempts, CvRNG*,
intflags, CvArr* _centers, double* _compactness )
_samples:输入样本的浮点矩阵,每个样本一行,如对彩色图像进行聚类,每个通道一行,CV_32FC3
cluster_count:所给定的聚类数目
_labels:输出整数向量:每个样本对应的类别标识,其范围为0- (cluster_count-1),必须满足以下条件:
cv::Mat data = cv::cvarrToMat(_samples),labels = cv::cvarrToMat(_labels);
CV_Assert(labels.isContinuous() && labels.type() == CV_32S &&
(labels.cols == 1 || labels.rows == 1)&&
labels.cols + labels.rows - 1 ==data.rows );
termcrit:指定聚类的最大迭代次数和/或精度(两次迭代引起的聚类中心的移动距离),其执行 k-means 算法搜索 cluster_count 个类别的中心并对样本进行分类,输出 labels(i) 为样本i的类别标识。其中CvTermCriteria为OpenCV中的迭代算法的终止准则,其结构如下:
#define CV_TERMCRIT_ITER 1
#define CV_TERMCRIT_NUMBER CV_TERMCRIT_ITER
#define CV_TERMCRIT_EPS 2
typedef struct CvTermCriteria
{
int type; int max_iter; double epsilon;
} CvTermCriteria;
max_iter:最大迭代次数。 epsilon:结果的精确性 。
attempts:
flags: 与labels和centers相关
_centers: 输出聚类中心,可以不用设置输出聚类中心,但如果想输出聚类中心必须满足以下条件:
CV_Assert(!centers.empty() );
CV_Assert( centers.rows == cluster_count );
CV_Assert( centers.cols ==data.cols );
CV_Assert( centers.depth() == data.depth() );
聚类中心的获得方式:(以三类为例)
double cent0 = centers->data.fl[0];
double cent1 = centers->data.fl[1];
double cent2 = centers->data.fl[2];
CV_IMPL int
cvKMeans2( const CvArr* _samples,int cluster_count,CvArr* _labels,
CvTermCriteriatermcrit, intattempts, CvRNG*,
int flags, CvArr* _centers, double* _compactness )
{
cv::Mat data = cv::cvarrToMat(_samples), labels= cv::cvarrToMat(_labels), centers;
if( _centers )
{
centers= cv::cvarrToMat(_centers);
// 将centers和data转换为行向量
centers= centers.reshape(1);
data= data.reshape(1);
// centers必须满足的条件
CV_Assert(!centers.empty());
CV_Assert(centers.rows== cluster_count );
CV_Assert(centers.cols== data.cols);
CV_Assert(centers.depth()== data.depth());
}
// labels必须满足的条件
CV_Assert(labels.isContinuous()&& labels.type()== CV_32S &&
(labels.cols == 1 || labels.rows == 1) &&
labels.cols + labels.rows - 1 == data.rows );
// 调用kmeans实现聚类,如果定义了输出聚类中心矩阵,那么输出centers
double compactness = cv::kmeans(data, cluster_count, labels,termcrit, attempts,
flags, _centers? cv::_OutputArray(centers) : cv::_OutputArray() );
if( _compactness )
*_compactness= compactness;
return 1;
}
double cv::kmeans( InputArray_data, int K,
InputOutputArray_bestLabels,
TermCriteriacriteria, intattempts,
intflags, OutputArray_centers )
{
const int SPP_TRIALS =3;
Mat data = _data.getMat();
// 判断data是否为行向量
bool isrow = data.rows == 1 && data.channels() > 1;
int N = !isrow ? data.rows : data.cols;
int dims = (!isrow? data.cols: 1)*data.channels();
int type = data.depth();
attempts= std::max(attempts, 1);
CV_Assert(data.dims<= 2 && type == CV_32F && K> 0 );
CV_Assert(N >= K);
_bestLabels.create(N, 1, CV_32S, -1, true);
Mat _labels, best_labels = _bestLabels.getMat();
// 使用已初始化的labels
if( flags & CV_KMEANS_USE_INITIAL_LABELS)
{
CV_Assert((best_labels.cols== 1 || best_labels.rows== 1) &&
best_labels.cols*best_labels.rows == N&&
best_labels.type() == CV_32S&&
best_labels.isContinuous());
best_labels.copyTo(_labels);
}
else
{
if( !((best_labels.cols== 1 || best_labels.rows== 1) &&
best_labels.cols*best_labels.rows == N&&
best_labels.type() == CV_32S&&
best_labels.isContinuous()))
best_labels.create(N, 1, CV_32S);
_labels.create(best_labels.size(), best_labels.type());
}
int*
labels = _labels.ptr
Mat centers(K, dims, type), old_centers(K, dims, type), temp(1, dims, type);
vector
vector
Vec2f* box = &_box[0];
double best_compactness = DBL_MAX,compactness = 0;
RNG&rng = theRNG();
int a, iter, i, j, k;
// 对终止条件进行修改
if( criteria.type& TermCriteria::EPS)
criteria.epsilon = std::max(criteria.epsilon, 0.);
else
criteria.epsilon = FLT_EPSILON;
criteria.epsilon *= criteria.epsilon;
if( criteria.type& TermCriteria::COUNT)
criteria.maxCount = std::min(std::max(criteria.maxCount, 2), 100);
else
criteria.maxCount = 100;
// 聚类数目为1类的时候
if( K == 1 )
{
attempts= 1;
criteria.maxCount = 2;
}
const
float* sample =
data.ptr
for( j = 0; j < dims; j++ )
box[j] = Vec2f(sample[j], sample[j]);
for( i = 1; i < N; i++ )
{
sample=
data.ptr
for( j = 0; j < dims; j++ )
{
floatv = sample[j];
box[j][0] = std::min(box[j][0], v);
box[j][1] = std::max(box[j][1], v);
}
}
for( a = 0; a < attempts; a++ )
{
double max_center_shift = DBL_MAX;
for( iter = 0;; )
{
swap(centers, old_centers);
/*enum
{
KMEANS_RANDOM_CENTERS=0, // Chooses random centers for k-Meansinitialization
KMEANS_PP_CENTERS=2, // Usesk-Means++ algorithm for initialization
KMEANS_USE_INITIAL_LABELS=1 // Uses the user-provided labels for K-Meansinitialization
};*/
if(iter == 0 && (a > 0 || !(flags& KMEANS_USE_INITIAL_LABELS)) )
{
if(flags & KMEANS_PP_CENTERS)
generateCentersPP(data, centers, K, rng, SPP_TRIALS);
else
{
for(k = 0; k< K; k++)
generateRandomCenter(_box,
centers.ptr
}
}
else
{
if(iter == 0 && a == 0 && (flags& KMEANS_USE_INITIAL_LABELS) )
{
for(i = 0; i< N; i++)
CV_Assert( (unsigned)labels[i] <(unsigned)K);
}
//compute centers
centers= Scalar(0);
for(k = 0; k< K; k++)
counters[k] = 0;
for(i = 0; i< N; i++)
{
sample=
data.ptr
k= labels[i];
float*center =
centers.ptr
j=0;
#ifCV_ENABLE_UNROLLED
for(;j <= dims- 4; j += 4 )
{
float t0 = center[j] + sample[j];
float t1 = center[j+1] + sample[j+1];
center[j] = t0;
center[j+1] = t1;
t0 = center[j+2] + sample[j+2];
t1 = center[j+3] + sample[j+3];
center[j+2] = t0;
center[j+3] = t1;
}
#endif
for(; j < dims;j++ )
center[j] += sample[j];
counters[k]++;
}
if(iter > 0 )
max_center_shift= 0;
for(k = 0; k< K; k++)
{
if(counters[k]!= 0 )
continue;
// if somecluster appeared to be empty then:
// 1. find the biggest cluster
// 2. find the farthest from the center pointin the biggest cluster
// 3. exclude the farthest point from thebiggest cluster and form a new 1-point cluster.
intmax_k = 0;
for(int k1 = 1; k1 < K; k1++ )
{
if( counters[max_k] < counters[k1] )
max_k = k1;
}
doublemax_dist = 0;
intfarthest_i = -1;
float*new_center =
centers.ptr
float*old_center =
centers.ptr
float*_old_center =
temp.ptr
floatscale = 1.f/counters[max_k];
for(j = 0; j< dims; j++)
_old_center[j] = old_center[j]*scale;
for(i = 0; i< N; i++)
{
if(labels[i]!= max_k )
continue;
sample =
data.ptr
double dist = normL2Sqr_(sample,_old_center, dims);
if( max_dist <= dist )
{
max_dist = dist;
farthest_i = i;
}
}
counters[max_k]--;
counters[k]++;
labels[farthest_i] = k;
sample=
data.ptr
for(j = 0; j< dims; j++)
{
old_center[j] -= sample[j];
new_center[j] += sample[j];
}
}
for(k = 0; k< K; k++)
{
float*center =
centers.ptr
CV_Assert(counters[k]!= 0 );
floatscale = 1.f/counters[k];
for(j = 0; j< dims; j++)
center[j] *= scale;
if(iter > 0 )
{
double dist = 0;
const
float* old_center =
old_centers.ptr
for( j = 0; j < dims; j++ )
{
double t = center[j] - old_center[j];
dist += t*t;
}
max_center_shift= std::max(max_center_shift, dist);
}
}
}
if(++iter == MAX(criteria.maxCount,2) || max_center_shift <= criteria.epsilon)
break;
// assignlabels
Matdists(1, N,CV_64F);
double*dist =
dists.ptr
parallel_for_(Range(0, N),
KMeansDistanceComputer(dist,labels, data,centers));
compactness= 0;
for(i = 0; i< N; i++)
{
compactness+= dist[i];
}
}
if( compactness < best_compactness)
{
best_compactness= compactness;
if(_centers.needed())
centers.copyTo(_centers);
_labels.copyTo(best_labels);
}
}
return best_compactness;
}
//灰度图像聚类分析
BOOL GrayImageSegmentByKMeans2(const IplImage* pImg, IplImage*pResult, intsortFlag)
{
assert(pImg != NULL&& pImg->nChannels== 1);
//创建样本矩阵,CV_32FC1代表位浮点通道(灰度图像)
CvMat*samples = cvCreateMat((pImg->width)* (pImg->height),1, CV_32FC1);
//创建类别标记矩阵,CV_32SF1代表位整型通道
CvMat*clusters = cvCreateMat((pImg->width)* (pImg->height),1, CV_32SC1);
//创建类别中心矩阵
CvMat*centers = cvCreateMat(nClusters, 1, CV_32FC1);
// 将原始图像转换到样本矩阵
{
intk = 0;
CvScalars;
for(int i = 0; i < pImg->width; i++)
{
for(int j=0;j < pImg->height; j++)
{
s.val[0] = (float)cvGet2D(pImg, j, i).val[0];
cvSet2D(samples,k++, 0, s);
}
}
}
//开始聚类,迭代次,终止误差.0
cvKMeans2(samples, nClusters,clusters, cvTermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS,100, 1.0), 1, 0, 0, centers);
// 无需排序直接输出时
if (sortFlag == 0)
{
intk = 0;
intval = 0;
floatstep = 255 / ((float)nClusters - 1);
CvScalars;
for(int i = 0; i < pImg->width; i++)
{
for(int j = 0;j < pImg->height; j++)
{
val = (int)clusters->data.i[k++];
s.val[0] = 255- val * step;//这个是将不同类别取不同的像素值,
cvSet2D(pResult,j, i, s); //将每个像素点赋值
}
}
returnTRUE;
}
BOOL ColorImageSegmentByKMeans2(const IplImage* img, IplImage* pResult, int sortFlag)
{
assert(img != NULL&& pResult != NULL);
assert(img->nChannels== 3 && pResult->nChannels == 1);
int i,j;
CvMat*samples=cvCreateMat((img->width)*(img->height),1,CV_32FC3);//创建样本矩阵,CV_32FC3代表位浮点通道(彩色图像)
CvMat*clusters=cvCreateMat((img->width)*(img->height),1,CV_32SC1);//创建类别标记矩阵,CV_32SF1代表位整型通道
int k=0;
for (i=0;i
{
for(j=0;j
{
CvScalars;
//获取图像各个像素点的三通道值(RGB)
s.val[0]=(float)cvGet2D(img,j,i).val[0];
s.val[1]=(float)cvGet2D(img,j,i).val[1];
s.val[2]=(float)cvGet2D(img,j,i).val[2];
cvSet2D(samples,k++,0,s);//将像素点三通道的值按顺序排入样本矩阵
}
}
cvKMeans2(samples,nClusters,clusters,cvTermCriteria(CV_TERMCRIT_ITER,100,1.0));//开始聚类,迭代次,终止误差.0
k=0;
int val=0;
float step=255/(nClusters-1);
for (i=0;i
{
for(j=0;j
{
val=(int)clusters->data.i[k++];
CvScalars;
s.val[0]=255-val*step;//这个是将不同类别取不同的像素值,
cvSet2D(pResult,j,i,s); //将每个像素点赋值
}
}
cvReleaseMat(&samples);
cvReleaseMat(&clusters);
return TRUE;
}
热心网友 时间:2022-04-14 22:05
1. 动词的语态热心网友 时间:2022-04-14 23:23
1. 动词的语态热心网友 时间:2022-04-15 00:57
《西游记》是我国四大名著之一,是一部老少皆宜的作品。其中充满了离奇,精彩的神话故事,每每读起《西游记》,老是会情不自禁地溶入那精彩的情节之中。热心网友 时间:2022-04-15 02:49
dsakljkjfJKCDKJFCDKVJKDVKDSDVJDSFDLJVDISHGDJKHVKSDJDKLCJSDLJVGDIVJLDKJVDVJXCLKJVDJVCKX,JVDKVJXCKLVJDIJVXLJCVOISDJVXLCVKJDSOIJVLKXCVJSDIVKFDJVDKLZSJVDOIVJLZCDIVJLVJDFIVJ