发布网友 发布时间:2022-04-23 10:19
共1个回答
热心网友 时间:2023-10-11 08:15
设x0为未观测的需要估值的点,x1,x2,…,xN 为其周围的观测点,观测值相应为y(x1 ),y(x2),…,y(xN).未测点的估值记为 (x0),它由相邻观测点的已知观测值加权取和求得:
此处,i为待定加权系数.
和以往各种内插法不同,Kriging内插法是根据无偏估计和方差最小两项要求来确定上式中的加权系数(i的,故称为最优内插法.
1. 无偏估计 设估值点的真值为y(x0).由于土壤特性空间变异性的存在,以及,y(x0)均可视为随机变量.当为无偏估计时,
⑽
将式⑼代入⑽式,应有
⑾
2. 估值和真值y(x0)之差的方差最小.即
⑿
利用式(3-10),经推导方差为
⒀
式中,((xi,xj)表示以xi和xj两点间的距离作为间距h时参数的半方差值,((xi,x0)则是以xi和x0两点之间的距离作为间距h时参数的半方差值.观测点和估值点的位置是已知的,相互间的距离业已知,只要有所求参数的半方差((h)图,便可求得各个((xi,xj)和((xi,x0)值.
因此,确定式⑼中各加权系数的问题,就是在满足式⑾的约束条件下,求目标函数以式⒀表示的方差为最小值的优化问题.求解时可采用拉格朗日法,为此构造一函数,(为待定的拉格朗日算子.由此,可导出优化问题的解应满足:
i=1,2,N ⒁
由式⒁和式⑾组成n+1阶线性方程组,求解此线性方程组便可得到n个加权系数(i和拉格朗日算子(.该线性方程组可用矩阵形式表示:
⒂
式中,( ij为((xi,xj)的简写.
求得各(i值和(值后,由式⑼便可得出x0点的最优估值y(x0).而且还可由式⒀求出相应该估值的方差之最小值(2min.将式⒁代入式⒀,最小方差值还可由下式方便地求出:
⒃
上述最优化问题求解还可用其他方法,在应用Kriging内插法时还有其他方面的问题,在此都不一一列举了。