什么是悖论?著名的悖论有哪些命题?
发布网友
发布时间:2022-04-23 09:30
我来回答
共2个回答
热心网友
时间:2023-10-09 14:00
首先要知道悖论是一个逻辑学的名词。
其定义可以这样表述:由一个被承认是真的命题为前提,设为B,进行正确的逻辑推理后,得出一个与前提互为矛盾命题的结论非B;反之,以非B为前提,亦可推得B。那么命题B就是一个悖论。当然非B也是一个悖论。
悖论当然是蕴涵着丰富的思想内容的。本文不准备详谈。对于悖论,最容易误解的原因就是望文生义。看到悖论这个名词里有一个“论”字,就以为悖论的形式就是一段言论或理论;或者认为悖论是一种推论(也即推理过程);或者把把悖论当成推理结果的结论。其实不然。至于那种自以为是,一知半解,不懂装懂的人,胡乱地把乱七八糟自相矛盾的谬论当成是逻辑学中的悖论,那就不是误解的问题了。
作为悖论,它具有以下的特征:
① 悖论是一个命题。
② 是被承认作为前提的一个真命题;
③ 以上述真命题为前提,进行正确的逻辑推理;
④ 结论是一个与前提互相矛盾的命题(理所当然也应该承认是一个真命题)。
如上所说,谁如果不知道悖论是一个逻辑学的名词;谁如果不知道作为悖论的的命题必须是被承认的一个真命题的话.
热心网友
时间:2023-10-09 14:01
悖(bèi)论,从字面上讲就是自相矛盾,讲不通,说不明的荒谬理论。但悖论并非无稽之谈,它在荒诞中蕴含着哲理,给人以启迪。沿着它所指引的推理思路,你会感到走上了一条繁花似锦的羊肠小道,开始觉得顺理成章,而后会不知不觉陷入自相矛盾的泥潭。一旦将矛盾揭破,又令人回味无穷,感到滑稽可笑。经过认真的思考,又提高了人们认识问题的能力。
有人把悖论分为两类。一类是逻辑和数学型悖论,是由逻辑和数学中的概念构成的。另一类是语文学悖论,是由命名和真、假等概念构成的。在数学研究中更注重第一类悖论。这类悖论的通常形式是:如果承认某命题正确,就会推出它是错误的;如果认为不正确,就会推出它是正确的。
现在用一个最简单的“说谎者悖论”作例子,这是公元前4世纪希腊哲学家欧几里得提出来的。
原命题为:“我正在说的这句话是谎话。”
如果你认为他说的话是一句真,那么根据这句话本身的内容来分析,他说的就是一句谎话。如果你认为他的话是谎话,那么既然说的是谎话,分析的结果他所说的就应该是真话。到底他说的是真话还是谎话,谁也说不清了(图149)。
类似的悖论早在公元前6世纪就有人提出来了,那是一位克里特岛的哲学家埃皮曼尼克斯提出的命题。他说:“克里特岛的人每一句话都是谎话”。试问这句话本身是真话还是谎话?如果我们认为它是真话,那么埃皮曼尼克斯本人就是克里特岛人,他的话应该是谎话。如果我们认为它是谎话,说明克里特岛人是有人讲真话的,当然这个命题就应该被否定。所以无论怎么看,都难以自圆其说。不过这个悖论与前一个的不同之处在于,它只能从肯定的前提推出否定的结果,却不能从否定的前提推出肯定的结果,因此算不上一个最典型的悖论。
悖论读来有趣,却常令科学家们感到苦恼。因为严密的科学都应该是真实可靠的。特别是数学,以严密的逻辑推理为基础,更容不得任何自相矛盾的命题或结论。例如“不在同一直线上的3点决定一个平面”的论断是正确的,那么只用两点词或同一直线上的3点或不在同一直线上的4点都不能决定一个平面。但悖论却破坏了这种严密性,它反映了数学科学并不是铁板一块,在它大厦中还存在着裂缝。它的一些概念和原理之中还存在着矛盾和不完善、不准确之外,有待于科学家们进一步探讨和解决。数学正是在不断发现和解决矛盾的过程中发展起来的。尽管从古希腊到今天,悖论给许多人带来了快乐,人们通常把它列入“趣味数学”的范畴,但那些伟大的科学家和数学家们却总是极其严肃地对待它。事实上,现代逻辑学和集合论中的一些巨大的进展正是努力解决了经典悖论的直接结果。