斜率之积为什么是向量点乘
发布网友
发布时间:2023-01-11 23:03
我来回答
共2个回答
热心网友
时间:2023-10-04 21:51
斜率又称“角系数”,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。如果直线与x轴互相垂直,直角的正切值为tan90°,故此直线不存在斜率(
向量点乘的几何意义是计算两矢量的夹角,是一条边向另一条边的投影乘以另一条边的长度。向量的点乘a*b公式:a*b=|a|*|b|*sinθ,sin是a,b的夹角,取值[0,π]。向量积|c|=|a×b|=|a||b|sin。点乘又叫向量的内积、数量积,是一个向量和它在另一个向量上的投影的长度的乘积;是标量。
热心网友
时间:2023-10-04 21:51
向量是由n个实数组成的一个n行1列(n*1)或一个1行n列(1*n)的有序数组;
向量的点乘,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。
点乘公式
对于向量a和向量b:
a和b的点积公式为:
要求一维向量a和向量b的行列数相同。
点乘几何意义
点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影,有公式:
推导过程如下,首先看一下向量组成:
定义向量:
根据三角形余弦定理有:
根据关系c=a-b(a、b、c均为向量)有:
即:
向量a,b的长度都是可以计算的已知量,从而有a和b间的夹角θ:
根据这个公式就可以计算向量a和向量b之间的夹角。从而就可以进一步判断这两个向量是否是同一方向,是否正交(也就是垂直)等方向关系,具体对应关系为:
a·b>0 方向基本相同,夹角在0°到90°之间
a·b=0 正交,相互垂直
a·b<0 方向基本相反,夹角在90°到180°之间
叉乘公式
两个向量的叉乘,又叫向量积、外积、叉积,叉乘的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量组成的坐标平面垂直。
对于向量a和向量b:
a和b的叉乘公式为:
其中:
根据i、j、k间关系,有:
叉乘几何意义
在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。
在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。如下图所示:
在二维空间中,叉乘还有另外一个几何意义就是:aXb等于由向量a和向量b构成的平行四边形的面积。