图中第4题,第二型曲面积分,不用高斯公式的做法
发布网友
发布时间:2023-05-11 15:26
我来回答
共3个回答
热心网友
时间:2024-11-30 20:13
∑在xoy面上的投影是圆周x^2+y^2=1,所以dxdy=0,∫∫ydxdy=0。
∑分为两片,∑1是x=√(1-y^2),取前侧,∑2是x=-√(1-y^2),取后侧。两片曲面在在yoz面上的投影都是矩形域:-1≤y≤1,0≤z≤h。所以∫∫zdydz=∫(-1到1)dy∫(0到h) zdz-∫(-1到1)dy∫(0到h) zdz=0。
∑分为两片,∑1是y=√(1-x^2),取右侧,∑2是y=-√(1-x^2),取左侧。两片曲面在在zox面上的投影都是矩形域:-1≤x≤1,0≤z≤h。所以∫∫xdzdx=2∫(-1到1)dx∫(0到h) xdz=0。
所以,原积分=0。追问谢谢
热心网友
时间:2024-11-30 20:13
∑在xoy面上的投影是圆周x^2+y^2=1,所以dxdy=0,∫∫ydxdy=0。
∑分为两片,∑1是x=√(1-y^2),取前侧,∑2是x=-√(1-y^2),取后侧。两片曲面在在yoz面上的投影都是矩形域:-1≤y≤1,0≤z≤h。所以∫∫zdydz=∫(-1到1)dy∫(0到h) zdz-∫(-1到1)dy∫(0到h) zdz=0。
∑分为两片,∑1是y=√(1-x^2),取右侧,∑2是y=-√(1-x^2),取左侧。两片曲面在在zox面上的投影都是矩形域:-1≤x≤1,0≤z≤h。所以∫∫xdzdx=2∫(-1到1)dx∫(0到h) xdz=0。
所以,原积分=0。
热心网友
时间:2024-11-30 20:14
升州爿