发布网友 发布时间:2022-04-23 19:22
共1个回答
热心网友 时间:2023-09-25 21:01
咨询记录 · 回答于2021-09-29人工智能,物联网时代有什么新的输入输出设备本文共分为三个章节:(1)什么是AIoT;(2)AIoT在工业自动化中的角色;(3)AIoT在工业领域的应用。(1)什么是AIoT人工智能(Artificial Intelligence,AI)可谓是近几年来最热门的一项技术,不论是什么行业,都积极地向AI靠拢,每项产品都声称自己是基于人工智能技术。目前的AI还没有那么大的能量,如果以解决不确定因素问题作为衡量计算机智力水平的方式,那么AI恐怕只有三四岁孩童的水平。现阶段的人工智能主要用于解决某些限定领域的特定问题,物联网(The Internet of Things,IoT)领域是其中之一。AIoT可视为人工智能技术和物联网技术的融合。先谈物联网:在物联网中,数据来源于设备中大量部署的传感器,传感器定时采集并回传设备数据。设备中嵌入的传感器、软件和网络使得它们能够通过互联网与其他设备和系统建立连接并交换数据。这种互联互通促进了资源和数据的高效利用。整套物联网的数据在最边缘的设备中生成,最终汇聚到一起。从数据的生成端到数据的汇聚端和处理端,数据链的传输过程较为冗长。这种冗长注定会引起数据传输的延迟,影响到客户体验。再说AIoT:随着AI技术的发展,人们发现数据处理并不是非得在汇聚端才能进行。AI技术将智能下沉到物联网系统的边缘,即传感器、相机、移动设备等硬件中。AI与IoT的融合,将数据分析移至IoT设备本身,从而消除了处理过程中的任何延迟。物联网的边缘设备不但能感测环境数据,透过深度学习等人工智能技术,设备能辨识周遭信息,将物联网进化成智慧物联网。举个例子,在视频监控中往往是先将全部的视频数据传输到云端,然后再花时间去判断监控中是否有感兴趣的信息,这种方式需要将全部的数据都存储下来,占用较大的内存。而在监控设备中部署目标识别等深度学习算法后,设备本身就能过滤出我们感兴趣的信息,再将这些关键信息上传至云端。将分析能力下沉到边缘设备,边缘设备不仅是数据的生成器,也成为了数据的分析器。这很大程度上减少了数据输入输出所占用的带宽,并且避免了分析的延迟。AIoT将物联网数据过滤为我们关心的信息,以改进决策过程,并在最合适的位置进行处理。(2)AIoT在工业自动化中的角色工业自动化本身就是物联网技术最主要的应用场景之一。具备感知能力的设备布局在生产的各个关节,收集诸如设备状态、原料信息等