简单搞定Shuffle机制运行原理
发布网友
发布时间:2023-04-10 09:06
我来回答
共1个回答
热心网友
时间:2023-09-14 16:22
概述
1)maprece中,map阶段处理的数据如何传递给rece阶段,是maprece框架中最关键的一个流程,这个流程就叫shuffle;
2)shuffle: 洗牌、发牌(核心机制:数据分区、排序、缓存);
3)具体来说:就是将maptask输出的处理结果数据,分发给recetask,并在分发的过程中,对数据按key进行了分区和排序。
2.4.2 Shuffle 结构
Shuffle缓存流程:
shuffle是MR处理流程中的一个过程,它的每一个处理步骤是分散在各个map task和rece task节点上完成的。
2.4.3 partition分区
如果receTask的数量> getPartition的结果数,则会多产生几个空的输出文件part-r-000xx;
如果1
如果receTask的数量=1,则不管mapTask端输出多少个分区文件,最终结果都交给这一个receTask,最终也就只会产生一个结果文件 part-r-00000;
例如:假设自定义分区数为5,则
(1)job.setNumReceTasks(1);会正常运行,只不过会产生一个输出文件
(2)job.setNumReceTasks(2);会报错
(3)job.setNumReceTasks(6);大于5,程序会正常运行,会产生空文件
2.4.5 Shuffle 运行机制
2)流程详解
上面的流程是整个maprece最全工作流程,但是shuffle过程只是从第7步开始到第16步结束,具体shuffle过程详解,如下:
1)maptask收集我们的map()方法输出的kv对,放到内存缓冲区中
2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
3)多个溢出文件会被合并成大的溢出文件
4)在溢出过程中,及合并的过程中,都要调用partitoner进行分组和针对key进行排序
5)recetask根据自己的分区号,去各个maptask机器上取相应的结果分区数据
6)recetask会取到同一个分区的来自不同maptask的结果文件,recetask会将这些文件再进行合并(归并排序)
7)合并成大文件后,shuffle的过程也就结束了,后面进入recetask的逻辑运算过程(从文件中取出一个一个的键值对group,调用用户自定义的rece()方法)
3)注意
Shuffle中的缓冲区大小会影响到maprece程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。
缓冲区的大小可以通过参数调整,参数:io.sort.mb 默认100M
2.4.6 Combiner 合并
1)combiner是MR程序中Mapper和Recer之外的一种组件
2)combiner组件的父类就是Recer
3)combiner和recer的区别在于运行的位置:
Combiner是在每一个maptask所在的节点运行
Recer是接收全局所有Mapper的输出结果;
4)combiner的意义就是对每一个maptask的输出进行局部汇总,以减小网络传输量
6)combiner能够应用的前提是不能影响最终的业务逻辑,而且,combiner的输出kv应该跟recer的输入kv类型要对应起来
Mapper