发布网友 发布时间:2022-04-23 21:17
共5个回答
热心网友 时间:2022-05-03 10:58
常用的全面的幂级数展开公式:f(x)=1/(2+x-x的平方)
因式分解
={1/(x+1)+1/[2(1-x/2)]}/3
展开成x的幂级数
=(n=0到∞)∑[(-x)^n+
(x/2)^n/2]
收敛域-1<x<1
绝对收敛级数:
一个绝对收敛级数的正数项与负数项所组成的级数都是收敛的。一个条件收敛级数的正数项与负数项所组成的级数都是发散的。
对于任意给定的正数tol,可以找到合适的区间(譬如坐标绝对值充分小),使得这个区间内任意三个点组成的三角形面积都小于tol。
热心网友 时间:2022-05-03 12:16
常用的幂级数展开式归纳如下图:
扩展资料
幂级数,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。
幂级数解法是求解常微分方程的一种方法,特别是当微分方程的解不能用初等函数或或其积分式表达时,就要寻求其他求解方法,尤其是近似求解方法,幂级数解法就是常用的近似求解方法。用幂级数解法和广义幂级数解法可以解出许多数学物理中重要的常微分方程,例如: 贝塞尔方程、勒让德方程。
参考资料:百度百科幂级数解法
热心网友 时间:2022-05-03 13:51
付费内容限时免费查看回答幂级数展开式f(x)=∑[n=0→∞]{a(n)(x-x0)^n}。亲 您好:以上供您参考。 供您参考 希望能够帮到您,望采纳,谢谢!
提问
回答亲 您好:嗯,是有问题。 供您参考 希望能够帮到您,望采纳,谢谢!
热心网友 时间:2022-05-03 15:42
常用幂级数展开式如下:
因式分解
={1/(x+1)+1/[2(1-x/2)]}/3
展开成x的幂级数
=(n=0到∞)∑[(-x)^n+
(x/2)^n/2]
收敛域-1<x<1
绝对收敛级数:
一个绝对收敛级数的正数项与负数项所组成的级数都是收敛的。一个条件收敛级数的正数项与负数项所组成的级数都是发散的。
对于任意给定的正数tol,可以找到合适的区间(譬如坐标绝对值充分小),使得这个区间内任意三个点组成的三角形面积都小于tol。
热心网友 时间:2022-05-03 17:50
如图
拓展资料
幂级数,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。幂级数是数学分析中的重要概念,被作为基础内容应用到了实变函数、复变函数等众多领域当中。
在数学中,泰勒级数(英语:Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。泰勒级数是以于1715年发表了泰勒公式的英国数学家布鲁克·泰勒(Sir Brook Taylor)的名字来命名的。通过函数在自变量零点的导数求得的泰勒级数又叫做迈克劳林级数,以苏格兰数学家科林·麦克劳林的名字命名。 泰勒级数在近似计算中有重要作用。
泰勒级数的重要性体现在以下三个方面:
幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。
一个解析函数可被延伸为一个定义在复平面上的一个开区域上的泰勒级数通过解析延拓得到的函数,并使得复分析这种手法可行。
泰勒级数可以用来近似计算函数的值。