发布网友 发布时间:2022-04-23 21:16
共2个回答
懂视网 时间:2022-09-05 18:28
1、在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。
2、例:a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。由勾股定理得,a2+b2=c2→32+42=c2,即:9+16=25=c2,c=5。所以我们可以利用勾股定理计算出c的边长为5。
3、勾股定理的逆定理:勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:如果a2+b2=c2,则△ABC是直角三角形。如果a2+b2>c2,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角。
热心网友 时间:2023-08-13 11:19
三个公式是:
(1)(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。
(2)(5,12,13),(7,24,25),(9,40,41)……2n+1,2n^2+2n,2n^2+2n+1(n是正整数)。
(3)(8,15,17),(12,35,37)……2^2*(n+1),^2-1,^2+1(n是正整数)。
(4)m^2-n^2,2mn,m^2+n^2(m、n均是正整数,m>n)。
勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
热心网友 时间:2023-08-13 11:19
勾股定理的三个公式是a=k(m²+n²),b=2kmn,c=k(m²+n²)。
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股数有:
1、能够构成直角三角形的三边长的三个正整数称为勾股数,即中,a,b,c为正整数时,称a,b,c为一组勾股数。
2、记住常见的勾股数可以提高解题速度,如3、4、5;6、8、10;5、12、13;7、24、25等。
3、用含字母的代数式表示n组勾股数:(n为正整数);(n为正整数);(m>n,m,n为正整数)。