什么是商被除数除以除数的得数为什么叫做商这个商定义的来源是什么
发布网友
发布时间:2023-04-29 07:53
我来回答
共4个回答
热心网友
时间:2023-04-30 00:53
《现代汉语规范字典》对字义是按字义引申的脉络排序的。但是,却把除法的得数"商"单独列了一个字头,这就看不出它是从哪里引申而来了。
可以这样推测一下:
最早的字典《说文解字》对"商"的解释是"从外知内也"(从外面测内部的情况)
。这与商讨、商量就有点联系了吧!
商,是“商议、商讨”“商贾、行商”的“商”,这两方面的意义哪个是从哪个引申来的还真不好说。不过这两方面的意义也是相通的——商议需要讨论、交流,商贾做生意也需要在价钱上进行讨论、交流。除法与加、减、乘法的计算很不相同——无论在计算方法、书写形式、计算过程上都不同,加、减、乘法都是直接加、减、乘,除法的计算却还包含着乘和减,计算过程中还需要“试商”——这不是在“商讨”吗?从这个意义上说,把计算除法的过程和结果称为“商”不是很有道理吗?
热心网友
时间:2023-04-30 00:54
商,是“商议、商讨”“商贾、行商”的“商”,这两方面的意义是相通的——商议需要讨论、交流,商贾做生意也需要在价钱上进行讨论、交流。
除法与加、减、乘法的计算很不相同——无论在计算方法、书写形式、计算过程上都不同,加、减、乘法都是直接加、减、乘,除法的计算却还包含着乘和减,计算过程中还需要“试商”——这不是在“商讨”吗?从中意义上就把计算除法的过程和结果称为“商”
对于形式如下的除法运算式,
a ÷ b = c (或 a / b = c ) ①
来说, a 称为 被除数,b 称为 除数,c 称为 商。
当 a、b、c 同属于 实数域 R(或 有理数域 Q,或 复数域 C) 时,除法可定义为乘法的逆运算,即,
a ÷ b = c ≡ a × b⁻¹ = c ②
其中,b⁻¹ 称为 b 的逆元(《中学数学》中称为 倒数),其满足:
b × b⁻¹ = b⁻¹ × b = 1
显然,由于 0 乘任何数都是 0,所有 0 不存在逆元,进而 0 不能作为被除数。
当 a、b、c 均来自 整数环 Z 时, 因为 除了 1 外 任何整数的 倒数都不是 整数,故,除了 1 外 任何整数都没有逆元,所以 我们不能像 ② 式 这样定义 ①。但,可以证明:
对于任意 整数 a、b 必然存在唯一的一对整数 c、r 满足:
a = c×b + r, 0 ≤ r < |b| (当 b|a 时 r = 0)
注:b|a 表示 b 整除 a。
于是,我们将 ① 改写为:
a ÷ b = (c, r) (或 a ÷ b = c 余 r) ①'
称 为 带余数除法,其中 a、b、c 称谓不变,r 称为 余数。
热心网友
时间:2023-04-30 00:54
什么是商?被除数除以除数的得数为什么叫做商,这个商定义的来源是什么?《现代汉语规范字典》对字义是按字义引申的脉络排序的。但是,却把除法的得数"商"单独列了一个字头,这就看不出它是从哪里引申而来了。
可以这样推测一下:
最早的字典《说文解字》对"商"的解释是"从外知内也"(从外面测内部的情况)
。这与商讨、商量就有点联系了吧!
商,是“商议、商讨”“商贾、行商”的“商”,这两方面的意义哪个是从哪个引申来的还真不好说。不过这两方面的意义也是相通的——商议需要讨论、交流,商贾做生意也需要在价钱上进行讨论、交流。除法与加、减、乘法的计算很不相同——无论在计算方法、书写形式、计算过程上都不同,加、减、乘法都是直接加、减、乘,除法的计算却还包含着乘和减,计算过程中还需要“试商”——这不是在“商讨”吗?从这个意义上说,把计算除法的过程和结果称为“商”不是很有道理吗?
热心网友
时间:2023-04-30 00:55
商,正如你说的“被除数除以除数的结果就叫商”,这是人们对数学中的一些概念的命名,没有为什么,只是一个称呼,就好像人要取个名,各种东西要取名一样,不然怎么叫?