如图,在等腰梯形ABCD中,AB∥DC,AD=BC,对角线AC与BD交于O,∠ACD=∠60°,点S,P,Q分别为OD,OA,BC的
发布网友
发布时间:2023-05-04 15:25
我来回答
共3个回答
热心网友
时间:2023-10-31 21:37
(1)依题意可知,△OAB、△OCD等边三角形;
因为点S,P分别为OD,OA的中点
所以CS⊥OD,BP⊥AO,SP=AD/2=BC/2,
在RT△BSC中,因为Q为斜边BC的中点,
所以SQ=BC/2,
同理可得PQ=BC/2,
所以△SPQahi等边三角形;
(2)因为AB=5,所以点O到AB的距离为5√3/2,
因为CD=3,所以点O到CD的距离为3√3/2,
所以梯形的高位4√3,
根据勾股定理可得BC=7,
所以SQ=7/2,
所以△SPQ的面积=SQ^2*√3/4=49√3/16
热心网友
时间:2023-10-31 21:37
(1)依题意可知,△OAB、△OCD等边三角形;
因为点S,P分别为OD,OA的中点
所以CS⊥OD,BP⊥AO,SP=AD/2=BC/2,
在RT△BSC中,因为Q为斜边BC的中点,
所以SQ=BC/2,
同理可得PQ=BC/2,
所以△SPQahi等边三角形;
热心网友
时间:2023-10-31 21:38
第二问如图