如图,点O是边长为2的正方形ABCD的对称中心,过点O作OM⊥ON,分别交正方形边于M,N,G,H,则当OM,ON绕O点旋转
发布网友
发布时间:2023-05-03 23:01
我来回答
共1个回答
热心网友
时间:2023-10-22 23:40
连接OA,OB,假定与AB边的交点是N,与AD边的交点是M。
因为点O是正方形ABCD的对称中心,所以,OA=OB,角MAO=角NBO=45度,角AOB=90度。
因为OM垂直ON,所以,角MON=90度,所以,角MON-角AON=角AOB-角AON,
即角AOM=角BON,所以,三角形AOM全等三角形BON,
所以,三角形AOM面积=三角形BON面积,
即有四边形MONA的面积=三角形AOB的面积=1/4正方形ABCD的面积=1