发布网友 发布时间:2023-04-26 10:49
共5个回答
热心网友 时间:2023-10-19 14:00
真正的数据分析师的核心课程是机器学习和深度学习,绝对不是Python开发或者Excel制表。
在你学习机器学习和深度学习的过程中,最重要的就是算法模型的训练。参加真正的数据分析师的培训有点类似于报了个奥数班。
所以要学这个需要强有力的理论知识作为支撑,比如说高数、离散、线代、数据结构、算法导论,概率论、统计学。
热心网友 时间:2023-10-19 14:01
数据分析师要学习Python、R、SAS等编程工具;对数据仓库需要了解可以去九道门做些实验项目;如果你觉得还是难,那就采用最基础的学习路径,直接买MYSQL关系型数据库的书看,随便到网上去找个免费的MYSQL课程听;;分布式存储HDOOP需要简单了解;云计算的技术作为了解就可以了;数据可视化不是很难,如果不要求特别美工的话,大家先理解图表,再研究研究仪表板,阿里云的Quich BI及DataV,百度的echarts都不错,主要是展示的业务结构需要规划;大数据技术:这个相对来说有些难度,如果是学数学统计类专业小伙伴就非常有优势了,其他专业的小伙伴也不用担心,毕竟工作后还可以继续学习,在工作中用的比较多的是聚类、关联、决策树、线性回归等,如果你不去做模型和算法工程师那么只需要会用就可以了,实在不行有专业的工具让我们用,阿里云的机器学习PAN是可以直接出结果的工具;。可以到天池大赛上去看一些案例,自己做做训练。如果自学的小伙伴觉得很难坚持,那就只能去报班了,九道门之类的,来督促自己,给自己一个动力。如果要成为大数据分析师的话就要时间沉定,或者让老师带你,像我就是进到决明后由赵强老师带了半年,现在基本上已经能熟练的搞这一套了。热心网友 时间:2023-10-19 14:01
1.定义问题
确定需要的问题,以及想得出的结论。需要考虑的选项有很多,要根据所在业务去判断。常见的有:变化趋势、用户画像、影响因素、历史数据等。
2.数据获取
数据获取的方式有很多种:
一是直接从企业数据库调取,需要SQL技能去完成数据提取等的数据库管理工作。
二是获取公开数据,*、企业、统计局等机构有。
三是通过Python编写网页爬虫。
3.数据预处理
对残缺、重复等异常数据进行清洗。
4.数据分析与建模
这个部分需要了解基本的统计分析方法、数据挖掘算法,了解不同统计方法适用的场景和适合的问题。
5.数据可视化和分析报告撰写
学习一款可视化工具,将数据通过可视化最直观的展现出来。
数据分析师通常分成两种,一种是应用级数据分析师,另一种是研发级数据分析师,区别就在于是否具备算法设计及实现的能力。
学习路线:第一阶段:python基础·
第二阶段:数据库·
第三阶段:高阶应用·
第四阶段:分析与挖掘·
第五阶段:项目实战
热心网友 时间:2023-10-19 14:02
选择机构重点要多试听,多比较,毕竟每个人接受信息的方式不一样,老师技术再好,如果不能有效地传达给学生,那对学生来说也是没用的,所以建议试听后找到适合自己的最重要。热心网友 时间:2023-10-19 14:03
数据分析师就是做数据分析的工作的,因为这是职业性的证书,数据分析师的就业面是挺广的,可以选择各行各业来发展。