发布网友 发布时间:2022-04-23 23:01
共5个回答
热心网友 时间:2023-10-13 00:13
数学期望不是平均值。
1、期望是个确定的数,是根据概率分布得到的。不管进不进行实验,期望都可以求出来。
数学期望,又称为均值,即"随机变量取值的平均值"之意,这个平均是指以概率为权的加权平均。
2、平均数(mean),是做多次实验之后,总和的平均数。
扩展资料:
数学期望的应用
1、经济决策
假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元。
若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润?并求出最大利润的期望值。
分析:由于该商品的需求量(销售量)X是一个随机变量,它在区间[10,30]上均匀分布,而销售该商品的利润值Y也是随机变量,它是X的函数,称为随机变量的函数。题中所涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。
因此,本问题的解算过程是先确定Y与X的函数关系,再求出Y的期望E(Y)。最后利用极值法求出E(Y)的极大值点及最大值。
2、体育比赛问题
乒乓球是我们的国球,上世纪兵兵球也为中国带了一些外交。中国队在这项运动中具有绝对的优势。现就乒乓球比赛的安排提出一个问题:假设德国国队(德国队名将波尔在中国也有很多球迷)和中国队比赛。
赛制有两种,一种是双方各出3人,三场两胜制, 一种是双方各出5人,五场三胜制,哪一种赛制对中国队更有利?
分析:由于中国队在这项比赛中的优势,不妨设中国队中每一位队员德国队员的胜率都为60%,接着只需要比较两个队对应的数学期望即可。
参考资料来源:百度百科-数学期望
热心网友 时间:2023-10-13 00:13
不是同一个概念,只有当各项权重相同是两者才相等,数学期望可以理解为加权平均数热心网友 时间:2023-10-13 00:14
神tm平均值
热心网友 时间:2023-10-13 00:14
数学期望不是平均值。热心网友 时间:2023-10-13 00:15
“随机变量的均值”不是专业的表述。虽然英文有时也用mean表示数学期望,但是中文一般不这样说。