问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

高一必修一数学知识点

发布网友 发布时间:2022-08-14 05:54

我来回答

1个回答

热心网友 时间:2024-12-02 20:32

高中高一数学必修1各章知识点总结

第一章 集合与函数概念

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1.元素的确定性; 2.元素的互异性; 3.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}

4、集合的分类:

1.有限集 含有有限个元素的集合

2.无限集 含有无限个元素的集合

3.空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

① 任何一个集合是它本身的子集。AíA

②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)

③如果 AíB, BíC ,那么 AíC

④ 如果AíB 同时 BíA 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,

A∪φ= A ,A∪B = B∪A.

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

记作: CSA 即 CSA ={x | x?S且 x?A}

S

CsA

A

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.

定义域补充

能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.

(又注意:求出不等式组的解集即为函数的定义域。)

构成函数的三要素:定义域、对应关系和值域

再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)

(见课本21页相关例2)

值域补充

(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

3. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.

C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }

图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。

(2) 画法

A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.

B、图象变换法(请参考必修4三角函数)

常用变换方法有三种,即平移变换、伸缩变换和对称变换

(3)作用:

1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。

发现解题中的错误。

4.快去了解区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.

5.什么叫做映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B”

给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

常用的函数表示法及各自的优点:

1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.

注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值

补充一:分段函数 (参见课本P24-25)

在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

补充二:复合函数

如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。

例如: y=2sinX y=2cos(X2+1)

7.函数单调性

(1).增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间(睇清楚课本单调区间的概念)

如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

2 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) 。

(2) 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(A) 定义法:

1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 变形(通常是因式分解和配方);4 定号(即判断差f(x1)-f(x2)的正负);5 下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)_

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:

函数
单调性

u=g(x)





y=f(u)





y=f[g(x)]





注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?

8.函数的奇偶性

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .

9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)

10.函数最大(小)值(定义见课本p36页)

1 利用二次函数的性质(配方法)求函数的最大(小)值2 利用图象求函数的最大(小)值3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

第二章 基本初等函数

一、指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *.

当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand).

当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。

注意:当 是奇数时, ,当 是偶数时,
2.分数指数幂

正数的分数指数幂的意义,规定:


0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

3.实数指数幂的运算性质

(1) · ;

(2) ;

(3) .

(二)指数函数及其性质

1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

a>1
0<a<1

图象特征
函数性质

向x、y轴正负方向无限延伸
函数的定义域为R

图象关于原点和y轴不对称
非奇非偶函数

函数图象都在x轴上方
函数的值域为R+

函数图象都过定点(0,1)

自左向右看,

图象逐渐上升
自左向右看,

图象逐渐下降
增函数
减函数

在第一象限内的图象纵坐标都大于1
在第一象限内的图象纵坐标都小于1

在第二象限内的图象纵坐标都小于1
在第二象限内的图象纵坐标都大于1

图象上升趋势是越来越陡
图象上升趋势是越来越缓
函数值开始增长较慢,到了某一值后增长速度极快;
函数值开始减小极快,到了某一值后减小速度较慢;

注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,则 ; 取遍所有正数当且仅当 ;
(3)对于指数函数 ,总有 ;
(4)当 时,若 ,则 ;

二、对数函数

(一)对数

1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)

说明:1 注意底数的* ,且 ;

2 ;

3 注意对数的书写格式.

两个重要对数:

1 常用对数:以10为底的对数 ;

2 自然对数:以无理数 为底的对数的对数 .

对数式与指数式的互化

对数式 指数式

对数底数 ← → 幂底数

对数 ← → 指数

真数 ← → 幂

(二)对数的运算性质

如果 ,且 , , ,那么:

1 · + ;

2 - ;

3 .

注意:换底公式

( ,且 ; ,且 ; ).

利用换底公式推导下面的结论(1) ;(2) .

(二)对数函数

1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).

注意:1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。

如: , 都不是对数函数,而只能称其为对数型函数.

2 对数函数对底数的*: ,且 .

2、对数函数的性质:

a>1
0<a<1

图象特征
函数性质

函数图象都在y轴右侧
函数的定义域为(0,+∞)

图象关于原点和y轴不对称
非奇非偶函数

向y轴正负方向无限延伸
函数的值域为R

函数图象都过定点(1,0)

自左向右看,

图象逐渐上升
自左向右看,

图象逐渐下降
增函数
减函数

第一象限的图象纵坐标都大于0
第一象限的图象纵坐标都大于0

第二象限的图象纵坐标都小于0
第二象限的图象纵坐标都小于0

(三)幂函数

1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);

(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;

(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地*近 轴正半轴,当 趋于 时,图象在 轴上方无限地*近 轴正半轴.

第三章 函数的应用

一、方程的根与函数的零点

1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。

2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即:

方程 有实数根 函数 的图象与 轴有交点 函数 有零点.

3、函数零点的求法:

求函数 的零点:

1 (代数法)求方程 的实数根;

2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数 .

1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.

2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.

3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
是否可以解决您的问题?
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
吃干燥剂会有什么反应 干燥剂不慎食用怎么办 于冕被流放多少时间才回来 石羊场客运站坐几路公汽到成都市龙潭社区保平村九组? 从成都石羊场到龙潭寺北湖客运站做地铁公交咋个赶车呀?老师们_百度知 ... 成都理工大学坐车到石羊场客运站怎么走?大概要多久啊?谢谢!! 请问一下成都理工大学到石羊车站怎么做车啊? 还在盲目护理毛孔吗?如何正确护理毛孔? 毛孔粗大该如何处理? 脸t区毛孔粗大怎么办 毛孔粗大的原因是什么 胡萝卜为什么会长成圆的 Mate10桌面上两个文件夹的应用不能自动合并 双子座内心的阴暗面有多大,有哪些坏习惯,你知道吗? 十二星座内心黑暗程度 怎样快速记忆知识点 台风造成灾害的原因有哪些?台风在我国登陆,主要影响哪些省区?_百度知 ... 蓉e行换了怎么登? 大肚笑佛背着个黄金袋是财神爷吗? 上饶有紫燕百味鸡吗? 西南交通大学九里校区的介绍 用烤箱烤山药片一般烤多少分钟? 山药用烤箱烤多长时间 山药用烤箱烤多久呢 失恋时内心伤痛表面却满不在乎的四大星座,都有哪些呢? 分手之后,总是走不出来,沉浸在过去的回忆中的星座有你吗? 西南交通大学理学院的介绍 3dmax8.0 opengl 抖音买东西后不能取件扣钱了怎么办 手机上怎么查询苹果手机激活时间 12星座异性缘排行榜,看看哪几个星座异性缘超好呢? 男人发早上好怎么幽默回复? 丽枫酒店在哪个APP订房最便宜 matlab读取excel数据括号里加个1什么意思 数学中 大括号前面加个1什么意思 比如1{a 48( )括号里加一个什么数是2和3还有5的因数 不是党员,影响考研吗 词歌平板删了系统文件开不了机,怎么强制恢复出厂设置 跪求词歌平板电脑安卓5.1刷机包,有恶意软件联网就一大堆广告自动下载... excel 括号里 括号外 的数值怎么同时加1 蚂蚁书签安卓怎么没有 ...电台频率详细?还有哪儿能买到带天线接口的收音机,能收听全球范围的广... 跪求词歌平板电脑刷机包安卓5.1.有恶意软件每次联网一大推广告自动下载... 在每个括号里加一个字,使两句话表示不同的意思 ()( )咬伤他的狗... 马原考研的话需要党员吗 the()括号里加一个字母使它成为一个单词 请在下面每行的括号里加一个成语,使每行中各包含三个成语 谁能告诉我百度文库书签中的文章怎么下载下来?谢天谢地! 流行句子里加括号表示另一种意思 我是青少年,女孩,用什么样的美白面膜效果好?我是属于后天晒的 (一),括号后面需要加丶吗? 哪些面膜好用!最好是美白补水的!青少年用的!