发布网友 发布时间:2022-08-11 16:31
共1个回答
热心网友 时间:2024-11-25 05:21
常用的估计方法有最小平方误差估计、极大似然估计和贝叶斯估计。 :对信号和噪声的统计知识可以不作任何要求。它的基本点是使 n次观测值与理论计算值的绝对误差在平方和意义下最小,并由此求得估计量。若u是变量x,y,…的函数并含有m个参量θ1,θ2,…,θm,即
u=f(θ1,θ2,…,θm;x,y,…)
对u和x,y,…作n次观测,得
(xi,yi,…,ui) (i=1,2,…,n)
于是u的理论计算值与观测值ui的绝对误差为,i=1,2,…,n。如n个绝对误差的平方和最小,从而使函数u与观测值u1,u2,…,un最佳拟合,也就是使参量θ1,θ2,…,θm满足下列关系
为最小。根据微分学中求极值方法可知,θ1,θ2,…,θm,应满足下列方程组
媉θ/媉θi=0 (i=1,2,…,m)
由此可求得最小平方误差估计量1,2,…,m。 对于单参量估计(多参量估计的情况相似)来说,首先要给定随机参量 θ的概率密度函数p(θ)和因估计误差而带来的代价函数C(θ,)。假设处理装置对Y进行了n次测量,y=(y1,y2,…,yn),且已知θ时y的条件联合概率密度为p(y│θ),则估计量(y)带来的风险为
平均风险为
贝叶斯估计就是使平均风险R()成为最小的估计。可由方程
解出贝叶斯估计量。