问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

什么是“微积分”?

发布网友 发布时间:2022-04-22 16:56

我来回答

2个回答

热心网友 时间:2023-07-06 00:10

微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的,主要内容包括极限、连续、可微和重积分,最重要的思想就是“微元”和“无限*近”。微积分是微分学和积分学的总称,微分学就是‘无线细分’,积分学就是‘无限求和’,无限就是极限,微积分的基础就是极限的思想。


微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。 它是其余科目的基础,是重中之中。它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中,有越来越广泛的作用。

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。


一元微分

定义:  设函数y = f(x)在某区间内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) – f(x0)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。   通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。 几何意义  设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。


多元微分

多元微分  多元微分又叫全微分,是由两个自变量的偏导数相对应的一元微分的增量表示的。   ΔZ=A*ΔX+B*ΔY+ο(ρ)为函数Z在点(x、y)处的全增量,(其中A、B不依赖于ΔX和ΔY,而只与x、y有关,ρ=[(x∧2+y∧2)]∧(1\2),A*ΔX+B*ΔY即是Z在点的全微分。总的来说,微分学的核心思想便是以直代曲,即在微小的邻域内,可以用一段切线段来代替曲线以简化计算过程。积分有两种:定积分和不定积分。定积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。 


一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。 

其中:[F(x) + C]' = f(x) 

一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。   定积分和不定积分的定义迥然不同,定积分是求图形的面积,即是求微元元素的累加和,而不定积分则是求其原函数,它们又为何通称为积分呢?这要靠牛顿和莱布尼茨的贡献了,把本来毫不相关的两个事物紧密的联系起来了。详见牛顿——莱布尼茨公式。

一阶微分与高阶微分,函数一阶导数对应的微分称为一阶微分; 一阶微分的微分称为二阶微分;   .......   n阶微分的微分称为(n+1)阶微分 

即:d(n)y=f(n)(x)*dx^n (f(n)(x)指n阶导数,d(n)y指n阶微分,dx^n指dx的n次方)   含有未知函数yt=f(t)以及yt的差分Dyt, D2yt,…的函数方程,称为常差分方程(简称差分方程);出现在差分方程中的差分的最高阶数,称为差分方程的阶。n阶差分方程的一般形式为   F(t,yt,Dyt,…, Dnyt)=0,   其中F是t,yt, Dyt,…, Dnyt的已知函数,且Dnyt一定要在方程中出现。 

含有两个或两个以上函数值yt,yt+1,…的函数方程,称为(常)差分方程,出现在差分方程中未知函数下标的最大差,称为差分方程的阶。n阶差分方程的一般形式为   F(t,yt,yt+1,…,yt+n)=0,   其中F为t,yt,yt+1,…,yt+n的已知函数,且yt和yt+n一定要在差分方程中出现。 

常微分方程与偏微分方程的总称。含自变量、未知函数和它的微商(或偏微商)的方程称为常(或偏)微分方程。未知函数为一元函数的微分方程,称为常微分方程。未知函数为多元函,从而出现多元函数的偏导数的方程,称为偏微分方程。

热心网友 时间:2023-07-06 00:11

微积分是研究微分学和积分学的统称,英文名称是Calculus,意为计算。这是因为早期微积分主要用与天文、力学、几何学中的计算的问题。后来人们也将微积分称为分析学,或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。极限是整个微积分学的基础。微分学包括求导和微分的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线斜率等均可用一套通用的符号进行讨论。积分学包括不定积分和定积分的概念和应用,为定义和计算面积、体积等提供一套通用的方法。
从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。[1]
(1)运动中速度与距离的互求问题
已知物体移动的距离

表为以时间为变量的函数

,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为以时间为变量的函数公式,求速度和距离。这类问题是研究运动时直接出现的,困难在于,所研究的速度和加速度是每时每刻都在变化的。比如,计算物体在某时刻的瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬间,物体移动的距离和所用的时间是

,而

是无意义的。但是,根据物理,每个运动的物体在它运动的每一时刻必有速度,这也是无疑的。已知速度公式求移动距离的问题,也遇到同样的困难。因为速度每时每刻都在变化,所以不能用运动的时间乘任意时刻的速度,来得到物体移动的距离。
(2)求曲线的切线问题
这个问题本身是纯几何的,而且对于科学应用有巨大的重要性。由于研究天文的需要,光学是十七世纪的一门较重要的科学研究,透镜的设计者要研究光线通过透镜的通道,必须知道光线入射透镜的角度以便应用反射定律,这里重要的是光线与曲线的法线间的夹角,而法线是垂直于切线的,所以总是就在于求出

微积分基础-割圆术
法线或切线;另一个涉及到曲线的切线的科学问题出现于运动的研究中,求运动物体在它的轨迹上任一点上的运动方向,即轨迹的切线方向。
(3)求长度、面积、体积、与重心问题等
这些问题包括,求曲线的长度(如行星在已知时期移动的距离),曲线围成的面积,曲面围成的体积,物体的重心,一个相当大的物体(如行星)作用于另一物体上的引力。实际上,关于计算椭圆的长度的问题,就难住数学家们,以致有一段时期数学家们对这个问题的进一步工作失败了,直到下一世纪才得到新的结果。又如求面积问题,早古希腊时期人们就用穷竭法求出了一些面积和体积,如求抛物线在区间

上与

轴和直线

所围成的面积

,他们就采用了穷竭法。当分割的份数越来越多时,所求得的结果就越来越

使用到微积分方法的割圆术
接近所求的面积的精确值。但是,应用穷竭法,必须添上许多技艺,并且缺乏一般性,常常得不到数字解。当阿基米德的工作在欧洲闻名时,求长度、面积、体积和重心的兴趣复活了。穷竭法先是逐渐地被修改,后来由于微积分的创立而根本地修改了。
(4)求最大值和最小值问题(二次函数,属于微积分的一类)
例如炮弹在炮筒里射出,它运行的水平距离,即射程,依赖于炮筒对地面的倾斜角,即发射角。一个“实际”的问题是:求能够射出最大射程的发射角。十七世纪初期,Galileo断定(在真空中)发射角是

时达到最大射程;他还得出炮弹从各个不同角度发射后所达到的不同的最大高度。研究行星的运动也涉及到最大值和最小值的问题。
微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微分的互理关系。
微积分思想在古代中国早有萌芽,公元前7世纪老庄哲学中就有无限可分性和极限思想

古代微积分(2张)
;公元前4世纪《墨经》中就有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)等思想。
三国时期的刘徽,于公元263年首创的割圆术求圆面积和放椎体积,求得圆周率约等于3.1416,他的极限思想和无穷小方法,是世界上古代极限思想的深刻体现。[1]刘徽对圆锥、圆台、圆柱的体积公式的证明,到公元5世纪,祖暅求球体体积的方法中都使用到微积分的思想方法。
北宋大科学家沈括的《梦溪笔谈》独创的“隙积术”、“哈圆术”和“方法棋局都数术”开创了对高阶等差别数求和的研究。 南宋大数学家秦九韶于1247年撰写了划时代巨著《数书九章》十八卷,创举世闻名的“大衍求一术”——增乘开方法求任意次数(高次)方程的近似解,比西方早500多年。特别是13世纪40年代到14世纪初,在主要领域都达到了中国古代数学的高峰,出现了现通称贾宪三角形的“开方作法本源图”和“增乘开方法”、“正负开方术”、“大衍求一术”、“大衍总数术”(一次同余组解法)、“垛积术”(高阶等差级数求和)、“招差术”(高次内差法)、“天元术”(数字高次方程一般解法)、“四元术”(四元高次方程组解法)、勾股数学、弧矢割圆术、组合数学、计算技术改革和珠算等都是在世界数学史上有重要地位的杰出成果,中国古代数学有了微积分前两阶段的出色工作,其中许多都是微积分得以创立的关键,中国已具备了17世纪发明微积分前夕的全部内在条件,已经接近微积分的大门。可惜中国元朝以后,八股取士制造成了学术上的大倒退,封建统治的文化*和盲目排外致使包括数学在内的科学日渐衰落,在微积分创立的最关键的一步上落伍了。
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
轻度慢性萎缩性胃炎 活动期,伴轻度肠 化 胃角多发糜烂。医生说了我... 胃窦粘膜慢性轻度萎缩性炎伴轻度肠化胃窦粘膜慢性轻度萎缩性炎? 芬兰留学读研费用是多少 芬兰留学读研时间 去芬兰留学学费生活费一年要多少 芬兰留学读研费用是多少? 芬兰留学读研学费多少? 感冒好多天了,可不可以打蓝球或者其它运动出出汗啊? 感冒打喷嚏,鼻塞然后可以让自己多出出汗吗 宝宝感冒了能去游泳吗 微积分的定义 什么是微积分 什么是微积分? 微积分的通俗理解是什么? 微积分的定义是什么? 什么叫微积分? 微积分是什么意思? 红米手机怎样打开隐藏应用 红米5A怎样隐藏应用 红米4X怎么隐藏应用 红米手机如何隐藏应用程序 平板关机键失灵修复方法 红米怎么隐藏程序 红米手机怎么样让一些应用不被人发现? 红米9怎样隐藏软件 红米隐藏应用 平板屏幕失灵怎么办 华硕平板电脑键盘没反应怎么回事 QQ拼音输入法里面怎么将打字出现表情那个东西关掉?每次打个“汗字都打不出来。 红米应用怎么隐藏软件 微积分是什么 微积分是什么?? 什么是微积分,什么是积分。 微积分是什么?概念与定义是什么? 什么叫做微积分 微积分有什么用? 微积分有何用处? 微分和微积分有区别吗 带有{ 俊 }的QQ名! qq拼音输入法打字为什么会出现表情,怎么取消..? 弄个带俊字的繁体字QQ网名 急求带俊的网名好听的符号多点的,有几个就写几个。 求男俊女清的QQ情侣网名、谢谢 我要QQ头像,有俊字的 求qq网名 里面有乔或俊或义中的任何一个都行 邢梓俊qq密码是什么 404 Not Found 李俊基QQ号 韩文俊这两年去那了?怎么一直没出现? 带俊字最好听的qq名字