如何用数学方法判断一个分数是否是循环小数?
发布网友
发布时间:2022-06-03 05:03
我来回答
共5个回答
热心网友
时间:2023-10-12 01:31
①一个最简分数,如果分母中既含有质因数2和5,又含有2和5以外的质因数,那么这个分数化成的小数必定是混循环小数。
②一个最简分数,如果分母中只含有2和5以外的质因数,那么这个分数化成的小数必定是纯循环小数。
把循环小数的小数部分化成分数的规则:
①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。
②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数 与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。
热心网友
时间:2023-10-12 01:31
有理数的概念:有理数由整数和分数组成。
推论:任意一个有理数,都可以化成一个不可约分数,p/q,(p,q)=1,p,q∈Z[最大公约数为1,即互质,不可约]。
显然你的问题是如果已经知道一个有理数p/q,(p,q)=1,p,q∈Z,如何判断p/q是不是循环小数
其实挺简单的,若q是10的约数(2.5,10)的约数倍,即有(2,5,10)经过有限次乘运算能得到的,那么p/q是一个不循环小数,否则就是无限循环小数。
现在证明一下:
我先证明有理数的运算是封闭的,即有理数的加减乘除是有理数。
令两个有理数,a/b,(a,b)=1 p/q,(p,q)=1,a,b,p,q∈Z
a/b+p/q=(aq+bp)/bq这可能是一个可约分数,但一定可以表示成一个不可约分数,只要上下同时除以(aq+bo,bq),同理,它们的差(aq-bp)/bq,积ab/bq,商aq/bq可能是一个可约分数,但一定可以表示成一个不可约分数,所以,有理数的运算是封闭的。
然后证明你的命题:
1.把p分解质因数 q=2^n*5^m*x^y,x表示除2,5外的因数之积,若y=0,则p/q=10^(n+m)/10^(n+m)*2^n*5^m=1/10^(n+m)*2^m*5^n,是不循环小数
2.若y≠0,即q含有除2,5外的因数,那么假定p/q的余数是r,即p不能整除q,只要证明p*10^n也不能整除q,就能证明p/q不是不循环小数,而它又是一个分数,那么只能是无限循环小数,对与这个问题“证明p*10^n也不能整除q”,我用数学归纳法.
(1)当n=0时,余数是r,不能整除
(2)当n=k时,假定余数是s
(3)当n=k+1时,p*10^(k+1)/q=p^k/q*10,余数是10s,或者说和10s同余,但是10s显然不可能和0同余,因为q中含有除2,5外的因数,但无论s,10都不含有除2,5外的因数,所以10s不和0同余,仍然存在余数
(4)综上,无论经过多少次运算,仍然存在余数,所以它有限循环小数
至于是否是无限不循环小数,只要先把无理数化简,然后如果最简形式仍然存在无理数,那就是无限不循环小数。
我们还可以证明无限循环小数可以表示成分数形式,也即无限循环小数为分数。
令一个无限循环小数的小数部分为:S=0.a1a2..ana1a2..an...,即以序列a1a2..an无限循环。令k=0.a1a2...an,那么S=k+k/10^n+k/10^2n+...
再令ai=k/10^[(i-1)*n] S=lim(n→+∞)∑ai=a1*(1-q^i)/1-q=a1/1-q=a1/1-1/10^n,而a1=k 所以S=k/(1-1/10^n)=10^nk/(10^n-1)=a1a2a3...an/10^n-1,这可能是一个可约分数,但一定可以表示成一个不可约分数,所以,无限循环小数为分数(有理数),而若一小数为S1=x.b1b2..bna1a2..ana1a2..an,即,不是从一开始就循环,那么不循环部,一定可以表示成b1b2b3...bn/10^n,一定是一个不可约分数,相加一定可表示成一个不可约分数,
热心网友
时间:2023-10-12 01:32
很简单,试着除几位就可以了。或者化成最简分数后,如果分母的质因数只有2、5,那么是可除尽的,否则是循环小数。
一个分数化小数的结果要么是整数,要么是有限小数,要么是无限循环小数。
任意一个有理数,都可以化成一个不可约分数;任何一个分数,也一定是有理数。
热心网友
时间:2023-10-12 01:32
①一个最简分数,如果分母中既含有质因数2和5,又含有2和5以外的质因数,那么这个分数化成的小数必定是混循环小数。
②一个最简分数,如果分母中只含有2和5以外的质因数,那么这个分数化成的小数必定是纯循环小数。
把循环小数的小数部分化成分数的规则:
①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。
②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数 与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。
热心网友
时间:2023-10-12 01:33
简单的说,能够写成分数形式的p/q,且p、q均是有理数的化,那么p/q就是有理数(有理数定义)。我想你所说得分数形式应该都是有理数。
无理数一般就是例如e,根号2等等这类的数,无法用p/q(p、q均是有理数)表示。