求一天体力学方面的二体问题的模型
发布网友
发布时间:2022-06-02 16:58
我来回答
共5个回答
热心网友
时间:2023-11-20 22:48
理性力学是力学中的一门横断的基础学科,它用数学的基本概念和严格的逻辑推理,研究力学中带共性的问题。理性力学一方面用统一的观点,对各传统力学分支进行系统和综合的探讨,另一方面还要建立和发展新的模型、理论,以及解决问题的解析方法和数值方法。
理性力学的研究特点是强调概念的确切性和数学证明的严格性,并力图用公理体系来演绎力学理论。1945年后,理性力学转向以研究连续介质为主,并发展成为连续统物理学的理论基础。
理性力学的发展简史
奠基时期 牛顿的《自然哲学的数学原理》一书可看作是理性力学的第一部著作。从牛顿三定律出发可演绎出力*动的全部主要性质。另一位理性力学先驱是瑞士的雅各布第一·伯努利,他最早从事变形体力学的研究,推导出沿长度受任意载荷的弦的平衡方程。通过实验,他发现弦的伸长和张力并不满足线性的胡克定律,并且认为线性关系不能作为物性的普遍规律。
法国科学家达朗贝尔于1743年提出:理性力学首先必须象几何学那样建立在显然正确的公理上;其次,力学的结论都应有数学证明。这便是理性力学的框架。
1788年法国科学家拉格朗日创立了分析力学,其中许多内容是符合达朗贝尔框架的;其后经过相当长的时间,变形体力学的一些基本概念,如应力、应变等逐渐建立起来;1822年法国柯西提出的接触力可用应力矢量表达的“应力原理”,一直是连续介质力学的最基本的假定;1894年芬格建立了超弹性体的有限变形理论;关于有向连续介质的猜想是佛克脱和迪昂提出的,其理论则是由法国科学家科瑟拉兄弟在1909年建立的。
1900年,著名德国数学家希尔伯特在巴黎国际数学大会上,提出的23个问题中的第6个问题就是关于物理学(特别是力学)的公理化问题。1908年以来,哈茂耳重提此事,但当时只限于一般力学的范围。
停滞时期 约从20世纪初到1945年。这段时期形成了以从事线性力学及其相关数学的研究为主的局面。线性理论充分发挥了它解释力学现象和解决工程技术问题的能力,并使与之相关的数学也发展到相当完善的地步。相形之下,非线性理论的研究没有多大进展,理性力学也因此处于停滞时期。
复兴时期 从1945年起,理性力学开始复兴。复兴不是简单的重复,而是达朗贝尔框架在连续介质力学方面的进一步发展。这种变化是由1945年赖纳和1940年里夫林的工作引起的。
赖纳的工作是研究非线性粘性流体,过去长期不得解决的所谓油漆搅拌器效率不高的问题,因为有了这个非线性粘性流体理论而*大白。里夫林的工作是在任意形式的贮能函数下,对于等体积变形的不可压缩弹性体,给出了几个简单而又重要问题的精确解,用这个理论解释橡胶制品的特性取得惊人的成功。另外,过去得不到解决的“柱体扭转时为什么会伸长”的问题也自然获得解决。这两个工作揭开了理性力学复兴的序幕。
奥尔德罗伊德1950年提出本构关系必须具有确定的不变性,这个思想后来就发展成为客观性原理。1953年,特鲁斯德尔提出低弹性体的概念。同年,埃里克森发表了各向同性不可压缩弹性物质中波的传播理论。
1956年以来,图平关于弹性电介质的系统研究,为电磁连续介质理论的发展打下了基础;1957年托马期关于奇异面的研究是另一重大进展;1957年诺尔首先提出纯力学物质理论的公理化问题。次年,他发表了连续介质的力学行为的数学理论,这便是简单物质的公理体系的雏型,后来逐渐发展成为简单物质谱系。
1958年埃里克森和特鲁斯德尔提出的杆和壳中应力和应变的准确理论,德国学者金特尔关于科瑟拉连续统的静力学和运动学的论文,引起了对有向物体理论的重新认识和系统研究。1969年科勒曼和诺尔建立了连续介质热力学的一般理论。
1960年特鲁斯德尔和图平所著《古典场论》,以及1966年特鲁斯德尔和诺尔所著《力学的线性场论》两书,概括了以前有关理性力学的全部主要成果,是理性力学的两部经典著作。这两部书的出版标志着理性力学复兴时期的结束。
发展时期 1966年以来,理性力学进入发展时期。它的发展是和当代科学技术发展的总趋势相呼应的。这个时期的特点是理性力学本身不断向深度和广度发展,同时又与其他学科相互渗透,相互促进。
理性力学的发展主要涉及五个方面:公理体系和数学演绎;非线性理论问题及其解析和数值解法;解的存在性和唯一性问题;古典连续介质理论的推广和扩充;以及与其他学科的结合。
理性力学的研究内容
连续介质力学是研究连续介质的宏观力学行为。连续介质力学用统一的观点来研究固体和流体的力学问题,因此也有人把连续介质力学狭义地理解为理性力学。
纯力学物质理论主要研究非极性物质的纯力学现象。诺尔提出的纯力学物质理论的公理体系由原始元、基本定律和本构关系三部分组成。1960年科勒曼和诺尔提出减退记忆原理。在这个公理体系下,并给出各类物质的谱系是纯力学物质理论的中心课题。纯力学物质研究得比较充分,尤其是简单物质理论已形成相当完整的体系,这是理性力学中最成功的一部分。
热力物质理论是用统一的观点和方法,研究连续介质中的力学和热学的耦合作用,1966年以来逐渐形成热力物质理论的公理体系。这个公理体系也是由原始元、基本定律和本构关系三部分组成,但其内容比纯力学物质理论更为广泛。到目前为止还没有一个公认的、完整的热力物质理论,它正在各派学者的争论中发展并不断完善。
电磁连续介质理论是按连续统的观点研究电磁场与连续介质的相互作用。由于现代科学技术发展的客观需要,电磁连续介质理论的研究越来越受到重视,已成为现代连续介质力学的重要发展方向之一。
混合物理论是研究由两种以上,包括固体和流体形式物质组成的混合物的有关物理现象。混合物理论可以用来研究扩散现象、多孔介质、化学反应介质等问题。
连续介质波动理论是研究波在连续介质中传播的一般理论和计算方法。连续介质波动理论把任何以有限速度通过连续介质传播的扰动都看做是“波”,所以研究的内容是相当广泛的。在连续介质波动理论中,奇异面理论占有十分重要的地位,但到目前为止,研究尚少。
广义连续介质力学是从有向物质点连续介质理论发展起来的连续介质力学。广义连续介质力学包括极性连续介质力学、非局部连续介质力学和非局部极性连续介质力学。极性连续介质力学主要研究微态固体和微态流体,特别是微极弹性固体和微极流体。非局部连续介质力学则主要研究非局部弹性固体和非局部流体。由于非局部极性连续介质力学是极性连续力学和非局部连续介质力学的结合,所以它的主要研究对象是非局部微极弹性固体和非局部微极流体。20世纪70年代以来,广义连续介质力学内容在不断扩充,并已发展成为广义连续统场论。
非协调连续统理论是研究不满足协调方程的连续统的理论。古典理论要求满足协调方程,但在有位错或内应力存在的物体中,协调方程不再满足,这时对连续位错理论必须引入非协调的概念。这种非协调理论宜用微分几何方法来描述。最近又开展了连续旋错理论的研究,把非协调理论和有向物体理论统一起来是一个研究课题,但还未得到完整的结果。
相对论性连续介质理论是从相对论观点出发研究连续介质的运动学、动力学、热动力学和电动力学等问题。
除上述的分支和理论外,理性力学还研究非线性连续介质理论的解析或数值方法以及同其他学科相交叉的问题。
理性力学来源于传统的分析力学、固体力学、流体力学、热力学和连续介质力学等力学分支,并同这些力学分支结合,出现了理性弹性力学、理性热力学、理性连续介质力学等理性力学的新兴分支。理性力学就是这样从特殊到—般,再从一般到特殊地发展着。理性力学除了同传统的各力学分支互相捉进外,还同数学、物理学以及其他学科密切相关。
热心网友
时间:2023-11-20 22:49
是天文学和力学之间的交叉学科,是天文学中较早形成的一个分支学科,它主要应用力学规律来研究天体的运动和形状。天体力学以往所涉及的天体主要是太阳系内的天体,五十年代以后也包括人造天体和一些成员不多(几个到几百个)的恒星系统。天体的力*动是指天体质量中心在空间轨道的移动和绕质量中心的转动(自转)。对日月和行星则是要确定它们的轨道,编制星历表,计算质量并根据它们的自传确定天体的形状等等。
天体力学以数学为主要研究手段,至于天体的形状,主要是根据流体或弹性体在内部引力和自转离心力作用下的平衡形状及其变化规律。天体内部和天体相互之间的万有引力是决定天体运动和形状的主要因素,天体力学目前仍以万有引力定律为基础。虽然已发现万有引力定律与某些观测事实发生矛盾(如水星近日点进动问题),而用爱因斯坦的广义相对论却能对这些事实作出更好的解释,但对天体力学的绝大多数课题来说,相对论效应并不明显。因此,在天体力学中只是对于某些特殊问题才需要应用广义相对论和其他引力理论。
二体问题是研究两个天体不考虑其他天体的影响在引力作用下的运动规律。研究n个天体在引力作用下的运动规律称做n体问题。二体问题是天体力学中最简单的,唯一有精确数学解的问题。曾经有人出重奖来鼓励人们解决n体问题,结果是从数学上证明了多体问题没有精确数学解。但是科学家找到了另外的解决方法,那就是摄动理论。计算机出现后,又有了数值解法。
热心网友
时间:2023-11-20 22:49
二体问题:
例题:在太阳引力作用下,一个单一的行星的运动。(比如日地系统)
把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。用现在叫做“首次积分”的办法,可以解决了它的求解问题。
三体(three-body problem),天体力学中的基本力学模型。研究三个可视为质点的天体在相互之间万有引力作用下的运动规律问题。这三个天体的质量、初始位置和初始速度都是任意的。在一般三体问题中,每一个天体在其他两个天体的万有引力作用下的运动方程都可以表示成3个二阶的常微分方程,或6个一阶的常微分方程。因此,一般三体问题的运动方程为十八阶方程,必须得到18个积分才能得到完全解。然而,目前还只能得到三体问题的10个初积分,还远不能解决三体问题。由于三体问题不能严格求解,在研究天体运动时,都只能根据实际情况采用各种近似的解法,研究三体问题的方法大致可分为3类:第一类是分析方法,其基本原理是把天体的坐标和速度展开为时间或其他小参数的级数形式的近似分析表达式,从而讨论天体的坐标或轨道要素随时间的变化;第二类是定性方法,采用微分方程的定性理论来研究长时间内三体运动的宏观规律和全局性质;第三类是数值方法,这是直接根据微分方程的计算方法得出天体在某些时刻的具体位置和速度。这三类方法各有利弊,对新积分的探索和各类方法的改进是研究三体问题中很重要的课题。
*性三体问题
三体问题的特殊情况。当所讨论的三个天体中,有一个天体的质量与其他两个天体的质量相比,小到可以忽略时,这样的三体问题称为*性三体问题。一般地把这个小质量的天体称为无限小质量体,或简称小天体;把两个大质量的天体称为有限质量体。
把小天体的质量看成无限小,就可不考虑它对两个有限质量体的吸引,也就是说,它不影响两个有限质量体的运动。于是,对两个有限质量体的运动状态的讨论,仍为二体问题,其轨道就是以它们的质量中心为焦点的圆锥曲线。根据圆锥曲线为圆、椭圆、抛物线和双曲线等四种不同情况,相应地*性三体问题分四种类型:圆型*性三体问题、椭圆型*性三体问题、抛物线型*性三体问题和双曲线型*性三体问题。
希尔按*性三体问题研究月球的运动,略去太阳轨道偏心率、太阳视差和月球轨道倾角,实际上这就是一种特殊的平面圆型*性三体问题。他得到的周期解,就是希尔月球运动理论的中间轨道。
在小行星运动理论中,常按椭圆型*性三体问题进行讨论,脱罗央群小行星的运动就是太阳-木星-小行星所组成的椭圆型*性三体问题的等边三角形解的一个实例。布劳威尔还按椭圆型*性三体问题来讨论小行星环的空隙。抛物线型*性三体问题和双曲线型*性三体问题在天体力学中则用得很少。人造天体出现后,*性三体问题有了新的用途,常用于研究月球火箭和行星际飞行器运动的简化力学模型,见月球火箭运动理论和行星际飞行器运动理论。
热心网友
时间:2023-11-20 22:50
二体问题
two-body problem
天体力学中的一个最基本的近似模型。研究两个可以视为质点的天体在其相互之间的万有引力作用下的动力学问题。二体问题是各类天体真实运动的第一次近似结果,也是研究天体精确运动的理论基础,它是迄今为止唯一能彻底求解的天体力学问题,因此它具有很重要的意义。现已证明,在万有引力作用下,二体问题的运动方程是可以严格解出的。两天体中的任何一个将沿圆锥曲线轨道绕另一个运动。至于运行轨道究竟是圆锥曲线中的哪一种,主要由两天体的质量、相对位置和相对运动的速度决定。若一天体相对于另一天体连线的切向运动速度为v,在v不是很大的通常情况下,这时两天体互相绕转的轨道是圆锥曲线中的椭圆(圆是其中的一个特例);而当v足够大时,这时相对运动的轨道就可能是圆锥曲线中的抛物线或双曲线。彗星相对于太阳的运动以及人造天体相对于某中心天体运动时,在一定的条件下都会出现沿抛物线或双曲线轨道运行的情况。
二体碰撞时间计算:
(把直线运动看成是椭圆的退化 用开普勒第三定律,并引入折合质量,即可解决)
T^2=4π^2a^3/GM
把直线看做椭圆的退化,半长轴即为a=距离的1半
碰撞所须的时间为T/2
热心网友
时间:2023-11-20 22:51
二体问题:
例题:在太阳引力作用下,一个单一的行星的运动。(比如日地系统)
把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。用现在叫做“首次积分”的办法,可以解决了它的求解问题。过程用积分方程很容易算,你自己查一些数据就行了.