发布网友 发布时间:2022-04-22 06:35
共11个回答
热心网友 时间:2023-02-09 03:15
1、机器学习是一种实现人工智能的方法,深度学习是一种实现机器学习的技术。
2、深度学习本来并不是一种独立的学习方法,其本身也会用到有监督和无监督的学习方法来训练深度神经网络。但由于近几年该领域发展迅猛,一些特有的学习手段相继被提出(如残差网络),因此越来越多的人将其单独看作一种学习的方法。
3、机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。
拓展资料:
1、机器学习直接来源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。从学习方法上来分,机器学习算法可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监督学习、集成学习、深度学习和强化学习。传统的机器学习算法在指纹识别、基于Haar的人脸检测、基于HoG特征的物体检测等领域的应用基本达到了商业化的要求或者特定场景的商业化水平,但每前进一步都异常艰难,直到深度学习算法的出现。
2、最初的深度学习是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并不是一个全新的概念,可大致理解为包含多个隐含层的神经网络结构。为了提高深层神经网络的训练效果,人们对神经元的连接方法和激活函数等方面做出相应的调整。其实有不少想法早年间也曾有过,但由于当时训练数据量不足、计算能力落后,因此最终的效果不尽如人意。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。
热心网友 时间:2023-02-09 04:33
深度学习和机器学习最大的区别就是性能。
机器学习主要是用来让机器拥用智能,可是深度学习则是一种实现机器学习的技术,而深度学习也是机器学习的一种。如果数据量比较少的时候,那深度学习的性能就比较的差,这是由于深度学习算法必须要有大量的数据才可以很好的理解其中的模式。
通常来说人工智能是比较有话题度的,可是现在被人们所熟知还是使用人工智能的领域,并且还给这些领域产生了很大的影响。因为使用人工智能的重点性,已经开发出来的系统除了能够模拟人的思维过程,还可以从处理数据中学习知识,而这种现象就是机器学习。
1.数据依赖,深度学习与机器学习的主要区别是在于性能。当数据量很少的时候,深度学习的性能并不好,因为深度学习算法需要大量数据才能很好理解其中蕴含的模式。
2.硬件支持,深度学习算法严重依赖高端机,而传统的机器学习算法在低端机上就能运行。深度学习需要 GPUs 进行大量的矩阵乘法运算。
3.特征工程,特征工程就是将领域知识输入特征提取器,降低数据复杂度。从时间和专业性来讲,这个过程开销很高。
4.解决方案,通常,我们使用传统的算法解决问题。这需要将问题化整为零,分别解决,得到结果后再将其进行组合。
5.执行时间,由于深度学习中含有非常多的参数,较机器学习而言会耗费更多的时间。机器学习在训练数据的时候费时较少,同时只需几秒到几小时。
而主要的应用场景则是:
计算机视觉:车牌识别,人脸识别。
信息检索:搜索引擎,文本检索,图像检索。
营销:自动邮件营销,目标识别。
医疗诊断:癌症检测,异常检测。
自然语言处理:语义分析,照片标记,在线广告投放。
如果从展望方面来看的话,那则主要是:
1. 机器学习和数据科学发展势头强劲,对想要生存下来的企业来说,在业务中使用机器学习变得越发重要。
2. 深度学习已被证明是现有技术中最先进的技术之一,它给人们带来了无限多的惊喜,未来相信也会如此。
3. 研究学者们仍在不断探索机器学习和深度学习。过去,对于二者的研究仅局限于学术范围,现在工业界也加大了对其的研究力度。
最好的证明就是图像识别,它越来越成为 AI 领导的领域。系统可以被设计为操纵预先编写的例程,该例程分析图片中的形状,颜色和对象,扫描数百万个图像以便教会自己如何正确地识别图像。
热心网友 时间:2023-02-09 06:08
有人说,人工智能(AI)是未来,人工智能是科幻,人工智能也是我们日常生活中的一部分。这些评价可以说都是正确的,就看你指的是哪一种人工智能。
今年早些时候,Google DeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machine learning)和深度学习(deep learning)都用上了。这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。
今天我们就用最简单的方法——同心圆,可视化地展现出它们三者的关系和应用。
如上图,人工智能是最早出现的,也是最大、最外侧的同心圆;其次是机器学习,稍晚一点;最内侧,是深度学习,当今人工智能大爆炸的核心驱动。
五十年代,人工智能曾一度被极为看好。之后,人工智能的一些较小的子集发展了起来。先是机器学习,然后是深度学习。深度学习又是机器学习的子集。深度学习造成了前所未有的巨大的影响。
从概念的提出到走向繁荣
1956年,几个计算机科学家相聚在达特茅斯会议(Dartmouth Conferences),提出了“人工智能”的概念。其后,人工智能就一直萦绕于人们的脑海之中,并在科研实验室中慢慢孵化。之后的几十年,人工智能一直在两极反转,或被称作人类文明耀眼未来的预言;或者被当成技术疯子的狂想扔到垃圾堆里。坦白说,直到2012年之前,这两种声音还在同时存在。
过去几年,尤其是2015年以来,人工智能开始大爆发。很大一部分是由于GPU的广泛应用,使得并行计算变得更快、更便宜、更有效。当然,无限拓展的存储能力和骤然爆发的数据洪流(大数据)的组合拳,也使得图像数据、文本数据、交易数据、映射数据全面海量爆发。
让我们慢慢梳理一下计算机科学家们是如何将人工智能从最早的一点点苗头,发展到能够支撑那些每天被数亿用户使用的应用的。
| 人工智能(Artificial Intelligence)——为机器赋予人的智能
早在1956年夏天那次会议,人工智能的先驱们就梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。这就是我们现在所说的“强人工智能”(General AI)。这个无所不能的机器,它有着我们所有的感知(甚至比人更多),我们所有的理性,可以像我们一样思考。
人们在电影里也总是看到这样的机器:友好的,像星球大战中的C-3PO;*的,如终结者。强人工智能现在还只存在于电影和科幻小说中,原因不难理解,我们还没法实现它们,至少目前还不行。
我们目前能实现的,一般被称为“弱人工智能”(Narrow AI)。弱人工智能是能够与人一样,甚至比人更好地执行特定任务的技术。例如,Pinterest上的图像分类;或者*的人脸识别。
这些是弱人工智能在实践中的例子。这些技术实现的是人类智能的一些具体的局部。但它们是如何实现的?这种智能是从何而来?这就带我们来到同心圆的里面一层,机器学习。
| 机器学习—— 一种实现人工智能的方法
机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。
机器学习直接来源于早期的人工智能领域。传统算法包括决策树学习、推导逻辑规划、聚类、强化学习和贝叶斯网络等等。众所周知,我们还没有实现强人工智能。早期机器学习方法甚至都无法实现弱人工智能。
机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。人们需要手工编写分类器、边缘检测滤波器,以便让程序能识别物体从哪里开始,到哪里结束;写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“ST-O-P”。使用以上这些手工编写的分类器,人们总算可以开发算法来感知图像,判断图像是不是一个停止标志牌。
这个结果还算不错,但并不是那种能让人为之一振的成功。特别是遇到云雾天,标志牌变得不是那么清晰可见,又或者被树遮挡一部分,算法就难以成功了。这就是为什么前一段时间,计算机视觉的性能一直无法接近到人的能力。它太僵化,太容易受环境条件的干扰。
随着时间的推进,学习算法的发展改变了一切。
| 深度学习——一种实现机器学习的技术
人工神经网络(Artificial Neural Networks)是早期机器学习中的一个重要的算法,历经数十年风风雨雨。神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。
例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。
每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。
我们仍以停止(Stop)标志牌为例。将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。
这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。
即使是这个例子,也算是比较超前了。直到前不久,神经网络也还是为人工智能圈所淡忘。其实在人工智能出现的早期,神经网络就已经存在了,但神经网络对于“智能”的贡献微乎其微。主要问题是,即使是最基本的神经网络,也需要大量的运算。神经网络算法的运算需求难以得到满足。
不过,还是有一些虔诚的研究团队,以多伦多大学的Geoffrey Hinton为代表,坚持研究,实现了以超算为目标的并行算法的运行与概念证明。但也直到GPU得到广泛应用,这些努力才见到成效。
我们回过头来看这个停止标志识别的例子。神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结果。
只有这个时候,我们才可以说神经网络成功地自学习到一个停止标志的样子;或者在*的应用里,神经网络自学习了你妈妈的脸;又或者是2012年吴恩达(Andrew Ng)教授在Google实现了神经网络学习到猫的样子等等。
吴教授的突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入海量的数据,来训练网络。在吴教授这里,数据是一千万*视频中的图像。吴教授为深度学习(deep learning)加入了“深度”(deep)。这里的“深度”就是说神经网络中众多的层。
现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。
| 深度学习,给人工智能以璀璨的未来
深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。
人工智能就在现在,就在明天。有了深度学习,人工智能甚至可以达到我们畅想的科幻小说一般。你的C-3PO我拿走了,你有你的终结者就好了。
热心网友 时间:2023-02-09 07:59
简单来说,机器学习是实现人工智能的方法,深度学习是实现机器学习的技术。机器学习在实现人工智能时中需要人工辅助(半自动),而深度学习使该过程完全自动化
三者关系:
举个例子:通过机器学习算法来识别水果是橘子还是苹果,需要人工输入水果的特征数据,生成一定的算法模型,进而可以准确预测具有这些特征的水果的类型,而深度学习则能自动的去发现特征进而判断。
热心网友 时间:2023-02-09 10:07
网络上那么多深度学习的资料,学习了很多之后还是懵懵懂懂的。Chris老师通过横向对比的方式,让你了解一个普通的程序和机器学习算法的相同点/差别点是什么?对于程序而言就是要一个准确的结果,而对于机器学习而言我们要的是规则。
机器学习有聚类算法和分类算法,这是常见的一些机器学习算法。网络上大多数资料都显示深度学习只是机器学习的一种特殊类型,今天我们从另一个角度来看,其实深度学习是另外一类算法的集合,深度学习的核心是网络深度和网络结构。网络深度是一个相对概念,没有说一个隐藏层要大于多少才算深度学习。
深度学习的另外一个核心是网络结构:深度自信网络、神经网络、循环网络、卷积网络都各自是一种结构。按照结构的不同,有不同的分类,比如LSTM、ResNet都是一种特殊的结构,而不是一种特殊的算法。LSTM是深度学习算法领域中的一种网络结构,千万不要理解为一种算法。
你可以去菜鸟窝网站上看看他们的人工智能特训营视频,他们老师讲的不错。能把一件事情讲明白,不像其他的网络课那样听完还是不懂。
希望有帮助到你`
热心网友 时间:2023-02-09 12:32
机器学习的算法流程
1、数据集准备
2、探索性地对数据进行分析
3、数据预处理
4、数据分割
5、机器学习算法建模
6、选择机器学习任务
7、评价机器学习算法对实际数据的应用情况如何
首先我们要研究的是数据问题,数据集是构建机器学习模型流程的起点,进行探索性数据分析是为了获得对数据的初步了解。探索性数据分析方法简单来说就是去了解数据,分析数据,搞清楚数据的分布。主要注重数据的真实分布,强调数据的可视化,使分析者能一目了然看出数据中隐含的规律,从而得到启发,以此帮助分析者找到适合数据的模型。
数据预处理,其实就是对数据进行清理、数据整理或普通数据处理。指对数据进行各种检查和校正过程,以纠正缺失值、拼写错误、使数值正常化/标准化以使其具有可比性、转换数据(如对数转换)等问题。
深度学习的算法流程
深度学习优化了数据分析,建模过程的流程也是缩短了,由神经网络统一了原来机器学习中百花齐放的算法。
1、数据集准备
2、数据预处理
3、数据分割
4、定义神经网络模型
5、训练网络
深度学习不需要我们自己去提取特征,而是通过神经网络自动对数据进行高维抽象学习,减少了特征工程的构成,在这方面节约了很多时间。
但是同时因为引入了更加深、更复杂的网络模型结构,所以调参工作变得更加繁重啦。例如:定义神经网络模型结构、确认损失函数、确定优化器,最后就是反复调整模型参数的过程。
热心网友 时间:2023-02-09 15:13
两者不是同一个level上的,深度学习是机器学习的一种。热心网友 时间:2023-02-09 18:11
机器学习是实现人工智能的方法,深度学习是实现机器学习的技术。机器学习在实现人工智能时中需要人工辅助(半自动),而深度学习使该过程完全自动化热心网友 时间:2023-02-09 21:26
深度学习本来并不是一种独立的学习方法,其本身也会用到有监督和无监督的学习方法来训练深度神经网络。但由于近几年该领域发展迅猛,一些特有的学习手段相继被提出(如残差网络),因此越来越多的人将其单独看作一种学习的方法。热心网友 时间:2023-02-10 00:57
算是包含关系吧。深度学习属于机器学习的一种分支,用来特征学习。。就是模拟人脑进行抽象,对于数据学习出很好的特征。热心网友 时间:2023-02-10 04:45
《智能问答与深度学习》ChatoperaCEO王海良著,对学习智能问答的朋友很有用!强烈推荐!