圆的定义和圆有那些性质
发布网友
发布时间:2022-04-22 06:21
我来回答
共3个回答
热心网友
时间:2023-07-11 22:40
圆的定义:
当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。在同一平面内,到定点的距离等于定长的点的集合叫做圆。
圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是概念性的图形。
圆的性质:
(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
(2)有关圆周角和圆心角的性质和定理
① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
(3)有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。
④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AC与BD分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比正方形、长方形、三角形的面积大。
热心网友
时间:2023-07-11 22:40
一、圆的定义
(1) 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一端点A随之旋转所形成的图形叫做圆,点O为圆心,线段OA为半径;
(2) 圆是到定点的距离等于定长的点的集合。
(3) 圆既是中心对称图形,又是轴对称图形。
二.点与圆的位置关系
设圆的半径为r,点到圆心的距离为d,则
点在圆外 d > r
点在圆上 d = r
点在圆内 d < r
三、与圆有关的概念
弦:连接圆上任意两点的线段。直径是圆内最长的弦。
弧:圆上任意两点间的部分。(分优弧和劣弧)
弓形:由弦及其所对的弧组成的图形。
等弧:在同圆或等圆中,能够互相重合的弧。
弦心距:圆心到弦的距离。
圆心角:顶点在圆心的角。
圆周角:顶点在圆上,并且两边都和圆相交的角。
四、有关的定理
1.垂径定理及推论:垂直于弦的直径一平分这条弦,并且平分弦所对的两条弧.
推论1:(1)平分弦(非直径)的直径垂直于弦,并且平分弦所对的两条弧.
(2)弦的垂直平分线过圆心,平分弧所对的弧.
(3)平分弦所对的一弧的直径垂直平分弦,且平分弦所对的另一条弧.
如果你认可我的回答,请及时点击【采纳为满意回答】按钮~
~手机提问者在客户端右上角评价点【满意】即可。
~你的采纳是我前进的动力
~O(∩_∩)O,记得好评和采纳,互相帮助追问你多大
追答你好,你可以采纳我的回答吗!?我20!
如果你认可我的回答,请及时点击【采纳为满意回答】按钮~
~手机提问者在客户端右上角评价点【满意】即可。
~你的采纳是我前进的动力
~O(∩_∩)O,记得好评和采纳,互相帮助
热心网友
时间:2023-07-11 22:41
性质:1,同弧所对的圆心角是圆周角的两倍,所以直径所对的圆周角为直角,但是同弦所对的圆周角和圆心角有两种关系
2.垂径定理
3.圆内接四边形对角互补,外角等于内对角
4.同弧所对的弦相等
以上都为同圆或等圆中