无穷小量是什么?是0还是一列数还是函数?
发布网友
发布时间:2022-04-22 06:32
我来回答
共1个回答
热心网友
时间:2023-07-22 16:33
无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。
无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。
无穷小量性质:
1、无穷小量不是一个数,它是一个变量。
2、零可以作为无穷小量的唯一一个常量。
3、无穷小量与自变量的趋势相关。
4、有界函数与无穷小量之积为无穷小量。
5、有限个无穷小量之和仍是无穷小量。
无穷小量是什么?是0还是一列数还是函数?
无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。 无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→...
无穷小量是什么?是0还是一列数还是函数
无穷小量是极限为零的变量,可以是函数,也可以是数列或其它对象。常数0看做变量,即看做一个总是0的变量,也可是无穷小量。但无穷小量不是0,是变化趋势为0的变量。一个有界量与无穷小量的乘积是无穷小量,其含义是这个乘积的极限是0.
什么是无穷小量?
无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞...
无穷小量分出法是什么方法
无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常它以函数、序列等形式出现。无穷小量即以数0为极限的变量,无限接近于0。无穷小量分出法的前提:无穷小量是以0为极限的函数,而不同的无穷小量收敛于0的速度有快有慢。因此两个无穷小量之间又分为高阶无穷小 ,低阶无...
什么叫做无穷小量?
1、无穷小量不是一个数,它是一个变量。2、零可以作为无穷小量的唯一一个常量。3、无穷小量与自变量的趋势相关。4、有限个无穷小量之和仍是无穷小量。5、有限个无穷小量之积仍是无穷小量。6、有界函数与无穷小量之积为无穷小量。7、特别地,常数和无穷小量的乘积也为无穷小量。8、恒不为零...
无穷小量是一个什么样的数量?
1、无穷小量不是一个数,它是一个变量。2、零可以作为无穷小量的唯一一个常量。3、无穷小量与自变量的趋势相关。4、恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。5、有限个无穷小量之和仍是无穷小量。6、有限个无穷小量之积仍是无穷小量。7、有界函数与无穷小量之积为无穷小量...
无穷小量是一个函数吗?
无穷小量不是一个函数,无穷小量是数学分析中的一个概念,用以严格定义诸如“最终会消失的量”、“绝对值比任何正数都要小的量”等非正式描述,即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限减小)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0)...
什么叫无穷小量
初学者应当注意的是,无穷小量是极限为0的变量而不是数量0,是指自变量在一定变动方式下其极限为数量0,称一个函数是无穷小量,一定要说明自变量的变化趋势。例如 在 时是无穷小量,而不能笼统说 是无穷小量。也不能说无穷小是 , 是指负无穷大。无穷小量 无穷小量通常用小写希腊字母表示,如α、...
无穷小量是指x还是f( x)
你想问的应该是无穷小量是变量还是函数吧?无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限减小)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。从定义上来看,无穷小量是指一个变量,也...
什么是无穷小量的极限?
无穷小量即以数0为极限的变量,无限接近于0。当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。例如,f(x)=(x-1)^2是当x→1时的无穷小量,f(n)<1/n是当n→∞时的无穷小量,f(x...