双曲线X2/9-Y2/16=1的两个焦点F1,F2双曲线上一点P,PF1垂直于PF2,求P到X轴上的距离
发布网友
发布时间:2022-05-30 18:59
我来回答
共1个回答
热心网友
时间:2023-11-01 08:25
解法1:
双曲线焦点为(±5,0)
∵PF1⊥PF2
∴[(x-5)/y][(x+5)/y]=-1
x^2+y^2=25
∴(1+16/9)x^2=16+25
|x|=3√41/5
解法2:
双曲线c=5,a=3,b=4
∴e=c/a=5/3
∴|PF1|=|5/3x+3|
|PF2|=|5/3x-3|
∴|PF1|^2+|PF2|^2=(2*5)^2
|5/3x-3|^2+|5/3x+3|^2=100
25x^2/9=41
|x|=3√41/5