发布网友 发布时间:2022-04-22 06:58
共5个回答
热心网友 时间:2022-06-17 02:03
参数,也叫参变量,是一个变量。
我们在研究当前问题的时候,关心某几个变量的变化以及它们之间的相互关系,其中有一个或一些叫自变量,另一个或另一些叫因变量。
如果我们引入一个或一些另外的变量来描述自变量与因变量的变化,引入的变量本来并不是当前问题必须研究的变量,我们把这样的变量叫做参变量或参数。
在泛指时,它可以是一种变量,用来控制随其变化而变化的其他的量。简单说,参数是给我们参考的。
扩展资料:
参数是很多机械设置或维修上能用到的一个选项,字面上理解是可供参考的数据,但有时又不全是数据。对指定应用而言,它可以是赋予的常数值。
参数思想贯彻于解析几何中。对于几何变量,人们用含有字母的代数式来表示变量,这个代数式叫作参数式,其中的字母叫做参数。用图形几何性质与代数关系来连立整式,进而解题。同时“参数法 ”也是许许多多解题技巧的源泉。
参考资料:百度百科-参数
热心网友 时间:2022-06-17 02:03
参数,也叫参变量,是一个变量。我们在研究当前问题的时候,关心某几个变量的变化以及它们之间的相互关系,其中有一个或一些叫自变量,另一个或另一些叫因变量。如果我们引入一个或一些另外的变量来描述自变量与因变量的变化,引入的变量本来并不是当前问题必须研究的变量,我们把这样的变量叫做参变量或参数。
参数思想贯彻于解析几何中。对于几何变量,人们用含有字母的代数式来表示变量,这个代数式叫作参数式,其中的字母叫做参数。用图形几何性质与代数关系来连立整式,进而解题。同时“参数法 ”也是许许多多解题技巧的源泉。
参数方程
在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t),y=φ(t),⑴且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数。
类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)。
圆的参数方程 x=a+r cosθ y=b+r sinθ (a,b)为圆心坐标 r为圆半径 θ为参数
椭圆的参数方程 x=a cosθ y=b sinθ a为长半轴 长 b为短半轴长 θ为参数
双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数
抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数
参考资料参数_百度百科
热心网友 时间:2022-06-17 02:04
参数就是用来代替一个数的未知数热心网友 时间:2022-06-17 02:04
参数,顾名思义热心网友 时间:2022-06-17 02:05
什么是参数?这个问题的回答有很多种,比如参数也叫参变量,是一个变量。我们在研究当前问题的时候,关心某几个变量的变化以及它们之间的相互关系,其中有一个或一些叫自变量,另一个或另一些叫因变量。如果我们引入一个或一些另外的变量来描述自变量与因变量的变化,引入的变量本来并不是当前问题必须研究的变量,我们把这样的变量叫做参变量或参数。