三角函数有那些公式?
发布网友
发布时间:2022-04-23 05:32
我来回答
共6个回答
热心网友
时间:2023-01-22 23:37
三角函数常用公式。strong>
两角和公式,
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA。倍角公式,tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga。半角公式,sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)。和差化积,2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)。
某些数列前n项和,1+2+3+4+5+6+7+8+9+?+n=n(n+1)/21+3+5+7+9+11+13+15+?+(2n-1)=n2
。正弦定理。a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径。余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角。弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r。
乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)。三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b</
热心网友
时间:2023-01-23 00:55
公式分类
同角三角函数的基本关系
tan α=sin α/cos α
平常针对不同条件的常用的两个公式
sin αˇ2+cos αˇ2=1 tan α *tan α 的邻角=1
锐角三角函数公式
正弦: sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边
二倍角公式
sin2A=2sinA•cosA cos2A=cos^2 A-sin^2 A=1-2sin^2 A=2cos^2 A-1 tan2A=(2tanA)/(1-tan^2 A)
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina =2sina(1-sin^2a)+(1-2sin^2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos^2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin^2a) =4sina[(√3/2)^2-sin^2a] =4sina(sin^260°-sin^2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos^2a-3/4) =4cosa[cos^2a-(√3/2)^2] =4cosa(cos^2a-cos^230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化积
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
积化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2
双曲函数
sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A^2 +B^2 +2ABcos(θ-φ)} • sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容
诱导公式
sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/[1+tan²(α/2)] cosα=[1-tan²(α/2)]/[1+tan²(α/2)] tanα=2tan(α/2)/[1-tan²(α/2)]
其它公式
(1) (sinα)^2+(cosα)^2=1 (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC 其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a)
热心网友
时间:2023-01-23 02:30
在直角三角形中,角C等于90°,sin∠A=BC/AB,cos∠A=AC/AB,tan∠A=BC/AC,依次类推。
热心网友
时间:2023-01-23 04:21
楼上的写的不错啊
热心网友
时间:2023-01-23 06:29
找数学老师去
热心网友
时间:2023-01-23 08:54
三角函数公式总结
一、诱导公式
口诀:(分子)奇变偶不变,符号看象限。
1. sin (α+k•360)=sin α
cos (α+k•360)=cos a
tan (α+k•360)=tan α
2. sin(180°+β)=-sinα
cos(180°+β)=-cosa
3. sin(-α)=-sina
cos(-a)=cosα
4*. tan(180°+α)=tanα
tan(-α)=tanα
5. sin(180°-α)=sinα
cos(180°-α)=-cosα
6. sin(360°-α)=-sinα
cos(360°-α)=cosα
7. sin(π/2-α)=cosα
cos(π/2-α)=sinα
8*. Sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
9*. Sin(π/2+α)=cosα
cos(π/2+a)=-sinα
10*.sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
二、两角和与差的三角函数
1. 两点距离公式
2. S(α+β): sin(α+β)=sinαcosβ+cosαsinβ
C(α+β): cos(α+β)=cosαcosβ-sinαsinβ
3. S(α-β): sin(α-β)=sinαcosβ-cosαsinβ
C(α-β): cos(α-β)=cosαcosβ+sinαsinβ
4. T(α+β):
T(α-β):
5*.
三、二倍角公式
1. S2α: sin2α=2sinαcosα
2. C2a: cos2α=cos2α-sin2a
3. T2α: tan2α=(2tanα)/(1-tan2α)
4. C2a’: cos2α=1-2sin2α
cos2α=2cos2α-1
四*、其它杂项(全部不可直接用)
1.辅助角公式
asinα+bcosα= sin(a+φ),其中tanφ=b/a,其终边过点(a, b)
asinα+bcosα= cos(a-φ),其中tanφ=a/b,其终边过点(b,a)
2.降次、配方公式
降次:
sin2θ=(1-cos2θ)/2
cos2θ=(1+cos2θ)/2
配方
1±sinθ=[sin(θ/2)±cos(θ/2)]2
1+cosθ=2cos2(θ/2)
1-cosθ=2sin2(θ/2)
3. 三倍角公式
sin3θ=3sinθ-4sin3θ
cos3θ=4cos3-3cosθ
4. 万能公式
5. 和差化积公式
sinα+sinβ= 书p45 例5(2)
sinα-sinβ=
cosα+cosβ=
cosα-cosβ=
6. 积化和差公式
sinαsinβ=1/2[sin(α+β)+sin(α-β)] 书p45 例5(1)
cosαsinβ=1/2[sin(α+β)-sin(α-β)]
sinαsinβ-1/2[cos(α+β)-cos(α-β)]
cosαcosβ=1/2[cos(α+β)+cos(α-β)]
参考资料:http://ke.baidu.com/view/91555.htm#3