发布网友 发布时间:2022-10-22 00:44
共1个回答
热心网友 时间:2024-03-14 08:09
(一)高等植物叶绿体的遗传
有几种高等植物有绿白斑植株,如紫茉莉、藏报春、加荆介等。1901年柯伦斯在紫茉莉中发现有一种花斑植株,着生绿色,白色和花斑三种枝条。在显微镜下观察,绿叶和花斑叶的绿色部分其细胞中均含正常的叶绿体,而白色或花斑叶的白色部分,细胞中缺乏正常的叶绿体,是一些败育的无色颗粒。
他分别以这三种枝条上的花作母本,用三种枝条上的花粉分别授给上述每个作为母本的花上,杂交后代的表现:完全取决于母本,而与花粉来自哪一种枝条无关。
接受花粉的枝条 提供花粉的枝条 杂种表现
白 色白 色 绿 色 白 色
花 斑
白 色
绿 色 绿 色 绿 色
花 斑
白 色
花 斑 绿 色 白、绿、花斑
花 斑
上述杂交结果说明:决定性状表现的遗传基础就在细胞质中,通过许多科学家的不同实验,都证明了细胞质的叶绿体含DNA,是双螺旋线性或环状裸露DNA分子,能自我复制,稳定遗传。叶绿体的遗传不仅受细胞质基因的控制,还于核基因有关。
(二)真菌类的线粒体遗传
1、酵母菌小菌落的遗传:啤酒酵母属于子囊菌,它在有性生殖时,不同交配型相结合形成的二倍体合子。酵母有一种“小菌落”个体。这种类型经培养后只能产生小菌落。
如果把小菌落酵母同正常个体交配,则产生正常的二倍体合子。经减数*产生单倍体后代也表现正常,不再分离小菌落。这表明小菌落性状的遗传与细胞质有关,而且这种交后代,4个子囊孢子有2个是a+,另两个是a-,交配型基因a+和a-仍然按预斯的孟德尔比例时行分离,而小菌落性状没有象核基因那样发生重组和分离,说明这个性状与核基因无关。
进一步研究发现,小菌落酶母细胞内,缺少细胞色素a和b,还缺少细胞色素氧化酶,这些酶类,存在于细粒体中,表明这种小菌落的变异与线粒体的基因组变异有关。
2、链孢霉缓慢生长型的遗传:链孢霉有一种缓慢生长突变型,呼吸弱,生长慢,这是由于线粒体结构和功能不正常,细胞色素氧化酶缺少,氧化作用降低,生长缓慢。
进行有性生殖时,正反交结果不同:杂交后代不出现一定的分离,表现非孟德尔式遗传。如果突变型的单倍体核(♂)和野生型的受精丝中的单倍体核(♀)结合(杂交),得到的后代全是野生型,反之全是突变型。 核质互作控制性状的实例:
(一)细胞质基因受核基因的控制
1、玉米埃型条斑的遗传:玉米第7染色体上有一个条纹基因ij,当起处于隐性纯合时(ijij),能引起质体突变率增加,使正常的质体突变为败育的质体,不能全部形成叶绿素,表现出白色和绿色相间的条斑性状的植株或是白化苗不能成活。
当条斑为母本与正常株IjIj为父本杂交时,其F1(Ijij)表型由种:绿色苗、条斑苗和白化苗。表明受这对基因控制的突变体是通过母本细胞质遗传的。如果反交,F1基因型与正交F1相同,但因母本细胞核中无ijij纯合基因,不能引起变异,因此杂种只表现绿苗的一种类型,说明质体变异是受核基因控制的。
2、草履虫放毒型的遗传:草履虫是单细胞原生动物,已知有两个品系,一个叫做放毒型(能产生草履虫素,杀死其他品系的草履虫而对自身无害),另一个叫敏感型(不能产生毒素,而且易被草履虫素所杀)。
放毒型草履虫为什么会产生草履虫素呢?是由于两个因素的相互作用而共同决定的:其一是在它的细胞质中,大约含有几百个卡巴粒(推测是一种含有噬菌体的溶源性细菌),这种卡巴粒含有DNA,并能自我复制和发生变异,表明在卡巴粒中含有质基因。其二是它的细胞核中含有一个显性基因K,只有当卡巴粒和显性基因K同时存在于一个草履虫内时,它才产生毒素,并是稳定放毒型。
草履虫有一个大核,主要负责营养,多倍性的,还有两个小核,是二倍性的,主要与遗传有关。草履虫的生殖方式有2种:无性生殖和有性生殖。
无性生殖:由一个个体通过细胞*,成为两个个体,基因型仍跟原来的个体一样。
有性生殖也称接合生殖,两个体接合,相互交换小核,此过程中大核消失,小核经减数*后相互交换。另外草履虫也可以自体受精。
当放毒型品系与敏感型品系杂交,如果接合时间长,相互交换了小核,同时也交换了细胞质,则都变成了放毒型,如果接合时间短,只交换了小核,没有交换细胞质,则交换后,放毒型仍为放毒型,敏感型也为敏感型。两种接合生殖情况,结果不同。可见,放毒性状的表现必须是:
KK+卡巴粒→放毒型
kk+卡巴粒
kk无卡巴粒 敏感型
KK卡巴粒
(二)细胞质对核基因作用的调节
1、细胞质对基因载体—染色体的调节
受精的细胞质中的内含物的分布(色素、卵黄粒、线粒体等)是不均匀的,对染色体的影响也不一样。如小麦瘿蚊的个体发育中,瘿蚊卵跟果蝇相似,其卵的后端含有一种特殊的细胞质—极细胞质,在极细胞质区域的核内,保持了全部40条染色体,以后分化为生殖细胞。但位于其他细胞质区域的核丢失了32条染色体,只保留了8条,将来成为体细胞。如果用线把卵结扎,使核不向细胞质移动,那么所有的核都把32条染色体放弃到核外,最后发育成不育的瘿蚊。可见极细胞质可阻止染色体的消减,使生殖细胞的分化成为可能。
2、细胞质对X染色体上基因的调节作用
哺乳动物性染色体♀XX,♂XY。X染色体上含有很多与性别无关的伴性基因。按理说,这样的基因♀性有两套,♂性只有1套,♀性基因产物也应是♂性基因产物地倍,可事实上并不是这样,二者产物基本相等。
因为♀性的两个X染色体,在间期核中表现“异固缩现象”,即属于异染色质,染色深,处于失活状态。至于哪个细胞中哪条染色体失活是随机的。
妇产科可以根据胎儿羊水中的胎儿脱落细胞染色,判断是男孩还是女孩。
(三)个体发育中质基因与核基因的关系
1、细胞质基因在个体发育中的作用是必须的,不可缺少的。
2、细胞核基因在个体发育中的起主导作用。
3、核质互作辨证统一的关系
生物遗传性状中,有两个主要的遗传系统—核遗传和质遗传,它们除了有相对的独立性,核基因起主导作用外,但又密切的联系,互相协调,在遗传上综合地发挥作用。
四、持续饰变
环境引起的表现型改变通过母亲细胞质而连续传递几代,变异性逐渐减少,最终消失的遗传现象。
介于母性影响和细胞质遗传之间。不能隔代遗传,无论在后代中怎样选择,最终性状消失。
例如,用水化氯醛处理四季豆,叶子产生畸形。F1代73%,F2代67%,F3代47%,F4代52%,F5代8%,F6代4%,F7代0%。