发布网友 发布时间:2022-10-19 17:37
共1个回答
热心网友 时间:2024-11-23 15:01
数控机床技术的五大方向和三大差距
欧美和日本等国家在20世纪90年代就开始研究制定了开放式数控装置的体系结构规范(OMAC、OSACA、OSEC),开发了开放式数控装置并作为发展战略。我国于2000年也开始研究并制定了开放式数控装置规范框架,但还很不完善。
4.2网络化
网络化有利于信息共享和提高生产效率。有资料介绍在多品种小批量生产中,1台数控机床用于切削的时间只占机动时间的25%~35%,联成网络后,可以提高到60%~65%。
数控的网络化技术,主要是指数控系统与外部的其他控制系统或上位机进行网络连接和网络控制。数控系统首先面向企业内部局域网,然后再经因特网向企业外部传输。这就是所谓的Internet/Intranet。网络可使企业与企业之间进行跨地区协同设计、协同制造、信息共享、远程监控、远程诊断和服务等。网络能为制造提供完整的生产数据信息,可以通过网络将加工程序传给远方的机床进行加工,也可远程诊断并发出指令调整。网络使各地分散数控机床联系在一起,互相协调,统一优化调整,使产品加工不局限于一个工厂内而实现社会化生产。
我国的机械制造企业信息化集成的发展也比较快,实现了车间级和企业级信息网络集成。数控的网络化发展前景广阔,但真正实现跨企业、跨地区的信息化网路还有很长的路要走。
5优化工艺参数提高效率
数控加工采用的工艺参数是否合理,对于提高生产效率和保证加工质量非常重要,必须逐步进行优化并建立工艺数据库。
优化工艺参数有2种方法。一种是通过实际试切来选择合理的工艺参数,费时、费力、费材料;另一种方法是应用力学动态优化仿真方法,比第一种方法省时、省力、省材料,同样可以获得较合理的工艺参数。在生产实践中,还可以对这些参数进行合理的调整。
航空行业是数控机床的大用户,对优化工艺参数、建立工艺数据库,并应用到生产实践中有急切的需求。因此,由*支持组织北京航空航天大学和中航工业北京航空制造工程研究所开展优化工艺参数技术攻关。以上单位开发了一整套工艺参数力学动态优化仿真、预测和数字化软硬件系统,建立了优化工艺参数数据库,形成了优化高速切削工艺参数手册,从根本上实现了工艺参数选择从试切到仿真的跨越,提高了加工效率和质量。这是一项意义重大而又深远的工作。
陕西飞机制造公司在近100项零件加工上应用了优化的工艺参数,平均加工效率提高了2倍以上;望江工业有限公司在火炮零件加工中采用优化工艺参数,效率提高了4倍以上;昌河飞机工业(集团)公司采用优化工艺参数加工铝合金零件,效率提高了2.8倍以上。
西门子828D数控系统具有动态工艺包(Dynmics),含有全新的“精优曲面”功能,可以实现高效加工并获得最佳表面质量。
我国数控设备生产企业也应该提供这方面的技术和服务。采用工艺优化参数不但可以提高生产效率和提高加工质量,而且对节省材料、节能减排,实现绿色制造有着重要意义。
追求高精度高质量
追求数控机床加工工件的高精度和高质量。首先数控机床本身必须具有这样的性能。为此,数控机床在结构和布局上,在材料选用上必须考虑到提高刚性和承载能力,以保证实现高精度;同时数控系统、伺服驱动系统、传动系统和测量传感器等也必须具有高分辨率、高精度的性能,才能满足加工工件高精度、高质量的要求。
1结构布局
为了实现功能和提高刚性,数控车床、车削中心、立式加工中心、卧式加工中心、龙门加工中心、车铣复合加工中心等在结构布局方面发生了深刻变化。
例如,国内有些厂家生产的立式加工中心和卧式加工中心,横向坐标采用立柱移动,这样减少了一层工作台(传统结构是双层十字工作台),提高了工作台的刚性和承载能力;龙门加工中心从工作台不动、双立柱移动发展成桥式结构,即工作台固定,2个立柱做成固定式墙体,在墙体上面装有导轨,横梁在导轨上做纵向运动。这种结构减少了运动部件的质量和运动惯性,有利于准定位,减少了占地面积。
沈阳机床生产的GMC2590μ桥式五轴加工中心、济南二机床生产的`XHV2525×60高架式五轴联动高速镗铣加工中心、台湾亚太菁英(股份)公司生产的跨轨式高速龙门加工中心,都采用了桥架式龙门框架结构。该结构布局合理、刚性好、承载能力强、受力均匀、热平衡性好、精度稳定、占地面积小。典型结构布局形式如图3所示。
2采用新材料提高刚性
用于数控机床的优质新材料的开发与应用,有利于提高数控机床整体刚性和精度,非常重要。
例如,宁波海天精工机械有限公司在生产的HTM-V120L数控立式车铣磨加工中心上采用了90%花岗岩成分聚合浇铸的床身。据该厂介绍,该材料制成的床身比一般铸铁床身抗震强度增加10倍。
又如,大连科德公司在生产的TG-45型六轴(或五轴)联动数控刀具磨床的底座采用了人造石材。
据称以上2家企业应用了这两种新材料,因其具有吸震性好、稳定性好、耐磨等特点,为提高和保持机床精度提供了保证。
此外,还有资料显示,蜂窝状材料、水泥材料、天然花岗岩石材等也有用于数控设备的情况。重视新型材料的开发与应用,必然使机床结构设计和性能发生变革。
3高精度插补数控系统
高位数CPU(64位)在数控装置上的应用,高速纳米级插补运算、高分辨率伺服等功能为提高数控机床精度做出重要贡献。
在数控机床上应用的CPU,从20世纪80年代的16位发展到现在的64位,其频率也从原来的5MHZ、10MHZ提高到上千MHZ。CPU的发展进一步提高了运算速度和分辨率(0.1μm、0.01μm)。国产数控系统开始采用64位CPU,可实现微米级精度插补,但与国外先进数控系统相比还有距离。
例如,发那科30i/31i/32i/35iB系列数控系统、三菱M700V数控系统、西门子的828D数控系统为都是纳米级插补或纳米级运算精度。
实现纳米级精度插补,伺服驱动系统控制分辨率和响应能力是非常关键的。为此,在驱动单元之中伺服电机轴上安装高精度传感器(16×106线/转),在闭环系统中采用高分辨率(1μm)的光栅尺,可使小型数控机床的运动部件定位精度达到2~3μm。一般情况下,国产小型数控机床还达不到这样的水平。