发布网友 发布时间:2022-04-23 03:54
共14个回答
热心网友 时间:2022-05-15 07:24
展开3全部排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
扩展资料:
排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
计算公式:
此外规定0!=1(n!表示n(n-1)(n-2)...1,也就是6!=6x5x4x3x2x1
组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。
计算公式:
;C(n,m)=C(n,n-m)。(n≥m)
其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。
热心网友 时间:2022-05-15 08:42
排列:
A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合:
C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
扩展资料:
排列组合的基本计数原理:
1、加法原理和分类计数法
加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法。
那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
2、乘法原理和分步计数法
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
合理分步的要求:
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
与后来的离散型随机变量也有密切相关。
热心网友 时间:2022-05-15 10:17
付费内容限时免费查看回答好的亲亲这个的话就是我写一下哈
您可以给我具体题目我帮您看一下哦
热心网友 时间:2022-05-15 12:08
计算方法如下:
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
基本理论和公式
排列与元素的顺序有关,组合与顺序无关。如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。
(一)两个基本原理是排列和组合的基础
(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。
(二)排列和排列数
(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.
从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法.
(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列
当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n!
参考资料:百度百科--排列数公式
热心网友 时间:2022-05-15 14:33
A和C 的计算方式如图:
排列:“有序” 的分叉结构; “与顺序有关”,主体交换顺序有影响。
组合:将分叉结构中的“序”剔除之后; “与顺序无关”,主体交换顺序无影响。
扩展资料:
排列组合常用的方法:
1、*法
*法:如果题目要求一部分主体元素必须在一起,需要先将要求在一起的部分视为一个整体,再与其他元素一起进行排列,先排整体,再排内部。
2、插空法
插空法:如果题目要求一部分主体元素不能在一起,则需要先排列其他主体,然后把不能在一起的元素插空到已经排列好的元素中间。
3、错位排列
错位排列:有n个元素和n个位置,如果要求每个元素的位置与元素本身的序号都不同,则n个元素对应的排列情况分别为,D1=0种,D2=1种,D3=2种,D4=9种,D5=44种,……
4、环形排列
环形排列:主体围成一圈,求方式数
5、隔板法
隔板法:如果题目表述为一组相同的主体元素分成数量不等的若干组,要求每组至少一个元素,则将隔板插入元素之间,计算出分类总数。
参考资料来源:百度百科-排列组合
热心网友 时间:2022-05-15 17:14
C:指从几个中选取出来,不排列,只组合
热心网友 时间:2022-05-15 20:12
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)追答A32 是排列 C32 是组合
比如A32 就是3乘以2 等于6
A 6 3 就是6*5*4
就是从大数开始乘后面那个数表示有多少个数 A 7 2 等于 7*6* 2就有两位 A 5 2 =5*4
那么C 3 2 就是还要除以一个 数 比如 C 3 2 就是 A 3 2 再除以 A 22
C 5 3 就是 A 5 3 除以 A 3 3
这个哪 能看懂么
热心网友 时间:2022-05-15 23:27
如图
热心网友 时间:2022-05-16 02:58
A79 是排列 C39 是组合热心网友 时间:2022-05-16 06:46
热心网友 时间:2022-05-16 10:51
纠正你的错误,A(0,8)=1热心网友 时间:2022-05-16 15:12
你这题有错啊。n怎么小于m了?热心网友 时间:2022-05-16 19:50
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)热心网友 时间:2022-05-17 00:45
组合计算公式
网页链接详见这篇经验