发布网友 发布时间:2022-10-07 23:31
共1个回答
热心网友 时间:2023-10-31 09:49
数独幻方是一个数字魔方,一种数字游戏。
幻方是什么呢?如右图就是一个幻方,即将n×n(n>=3)个数字放入n×n的方格内,使方格的各行、各列及对角线上各数字之各相等。
8 1 6
3 5 7
4 9 2
当n为奇数时,我们称幻方为奇阶幻方。可以用Merzirac法与loubere法实现,故命名为horse法。 把幻方看成一个两端突出的九宫,把数字从左到右斜排 (九子斜排),把上下,左右之数依次对调(上下变更,左右对易),把左上、左下,右上,右下的数“拉”出来(四维突出)
4 9 2
3 5 7
8 1 6 在第一行居中的方格内放1,依次向左上方填入2、3、4…,如果左上方已有数字,则向下移一格继续填写。如下图用Merziral法生成的5阶幻方:
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9 在居中的方格向上一格内放1,依次向左上方填入2、3、4…,如果左上方已有数字,则向上移两格继续填写。如下图用Louberel法生成的7阶幻方:
30 39 48 1 10 19 28
38 47 7 9 18 27 29
46 6 8 17 26 35 37
5 14 16 25 34 36 45
13 15 24 33 42 44 4
21 23 32 41 43 3 12
22 31 40 49 2 11 20 先在任意一格内放入1。向左走1步,并下走2步放入2(称为马步),向左走1步,并下走2步放入3,依次类推放到n。在n的下方放入n+1(称为跳步),再按上述方法放置到2n,在2n的下边放入2n+1。如下图用Horse法生成的5阶幻方:
77 58 39 20 1 72 53 34 15
6 68 49 30 11 73 63 44 25
16 78 59 40 21 2 64 54 35
26 7 69 50 31 12 74 55 45
36 17 79 60 41 22 3 65 46
37 27 8 70 51 32 13 75 56
47 28 18 80 61 42 23 4 66
57 38 19 9 71 52 33 14 76
67 48 29 10 81 62 43 24 5
一般的,令矩阵[1,1]为向右走一步,向上走一步,[-1,0]为向左走一步。则马步可以表示为2X+Y,{X∈{[1,0], [-1,0]},Y∈{[0,1], [0,-1]}}∪{Y∈{[1,0], [-1,0]},X∈{[0,1], [0,-1]}}。对于2X+Y相应的跳步可以为2Y,-Y,X,-Y,X,3X,3X+3Y。上面的的是X型跳步。Horse法生成的幻方为魔鬼幻方。 将n阶幻方看作一个矩阵,记为A,其中的第i行j列方格内的数字记为a(i,j)。在A内两对角线上填写1、2、3、……、n,各行再填写1、2、3、……、n,使各行各列数字之和为n*(n+1)/2。填写方法为:第1行从n到1填写,从第2行到第n/2行按从1到进行填写(第2行第1列填n,第2行第n列填1),从第n/2+1到第n行按n到1进行填写,对角线的方格内数字不变。如下所示为6阶填写方法:
1 5 4 3 2 6
6 2 3 4 5 1
1 2 3 4 5 6
6 5 3 4 2 1
6 2 4 3 5 1
1 5 4 3 2 6
如下所示为8阶填写方法(转置以后):
1 8 1 1 8 8 8 1
7 2 2 2 7 7 2 7
6 3 3 3 6 3 6 6
5 4 4 4 4 5 5 5
4 5 5 5 5 4 4 4
3 6 6 6 3 6 3 3
2 7 7 7 2 2 7 2
8 1 8 8 1 1 1 8
将A上所有数字分别按如下算法计算,得到B,其中b(i,j)=n×(a(i,j)-1)。则AT+B为目标幻方
(AT为A的转置矩阵)。如下图用Hire法生成的8阶幻方:
1 63 6 5 60 59 58 8
56 10 11 12 53 54 15 49
41 18 19 20 45 22 47 48
33 26 27 28 29 38 39 40
32 39 38 36 37 27 26 25
24 47 43 45 20 46 18 17
16 50 54 53 12 11 55 9
57 7 62 61 4 3 2 64 将n阶单偶幻方表示为4m+2阶幻方。将其等分为四分,成为如下图所示A、B、C、D四个2m+1阶奇数幻方。
A C
D B
A用1至2m+1填写成(2m+1)2阶幻方;B用(2m+1)2+1至2*(2m+1)2填写成2m+1阶幻方;C用2*(2m+1)2+1至3*(2m+1)2填写成2m+1阶幻方;D用3*(2m+1)2+1至4*(2m+1)2填写成2m+1阶幻方;在A中间一行取m个小格,其他行左侧边缘取m-1列,将其与D相应方格内交换;B与C接近右侧m-1列相互交换。如下图用Strachey法生成的6阶幻方:
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11 将n阶双偶幻方表示为4m阶幻方。将n阶幻方看作一个矩阵,记为A,其中的第i行j列方格内的数字记为a(i,j)。
先令a(i,j)=(i-1)*n+j,即第一行从左到可分别填写1、2、3、……、n;即第二行从左到可分别填写n+1、n+2、n+3、……、2n;…………之后进行对角交换。对角交换有两种方法:
方法一;将左上区域i+j为偶数的与幻方内以中心点为对称点的右下角对角数字进行交换;将右上区域i+j为奇数的与幻方内以中心点为对称点的左下角对角数字进行交换。(保证不同时为奇或偶即可。)
方法二;将幻方等分成m*m个4阶幻方,将各4阶幻方中对角线上的方格内数字与n阶幻方内以中心点为对称点的对角数字进行交换。
如下图用Spring法生成的4阶幻方:
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1 先构造n-2幻方,之后将其中的数字全部加上2n-2,放于n阶幻方中间,再用本方法将边缘数字填写完毕。本方法适用于n>4的所有幻方,我于2002年12月31日构造的数学模型。YinMagic法可生成6阶以上的偶幻方。如下图用YinMagic法生成的6阶幻方:
10 1 34 33 5 28
29 23 22 11 18 8
30 12 17 24 21 7
2 26 19 14 15 35
31 13 16 25 20 6
9 36 3 4 32 27 如将幻方看成是无限伸展的图形,则任何一个相邻的n*n方格内的数字都可以组成一个幻方。则称该幻方为魔鬼幻方。
用我研究的Horse法构造的幻方是魔鬼幻方。如下的幻方更是魔鬼幻方,因为对于任意四个在两行两列上的数字,他们的和都是34。此幻方可用YinMagic方法生成。
15 10 3 6
4 5 16 9
14 11 2 7
1 8 13 12