发布网友 发布时间:2022-11-27 03:59
共1个回答
热心网友 时间:2023-11-05 03:23
令初值问题表述如下。
y'=f(t,y),y(t0)=y0
其中,k1=f(tn,yn)
k2=f(tn+h/2,yn+hk1/2)
这样,下一个值(yn+1)由现在的值(yn)加上时间间隔(h)和一个估算的斜率的乘积所决定。该斜率是以下斜率的加权平均:
k1是时间段开始时的斜率;
k2是时间段中点的斜率,通过欧拉法采用斜率k1来决定y在点tn+h/2的值;
k3也是中点的斜率,但是这次采用斜率k2决定y值;
k4是时间段终点的斜率,其y值用k3决定。
当四个斜率取平均时,中点的斜率有更大的权值:
RK4法是四阶方法,也就是说每步的误差是h阶,而总积累误差为h阶。
注意上述公式对于标量或者向量函数(y可以是向量)都适用。
在各种龙格-库塔法当中有一个方法十分常用,以至于经常被称为“RK4”或者就是“龙格-库塔法”。该方法主要是在已知方程导数和初值信息,利用计算机仿真时应用,省去求解微分方程的复杂过程。