问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

科普|什么是地球关键带?

发布网友 发布时间:2022-10-26 14:02

我来回答

1个回答

热心网友 时间:2023-09-15 12:08

地球表层是大气圈、生物圈、土壤圈、水圈交汇的异质性地带,是生命活动最为旺盛的热点区域,被称为“地球关键带”。它是21世纪地球科学研究的重点领域,也是新时期我国环境地球学科的优先发展领域。

2021年5月15日,在经历了296天的太空之旅后,中国人自己研制的“天问”一号火星探测器所携带的“祝融号”火星车及其着陆组合体,成功抵达中国人问天之路的关键一站——火星。“祝融号”的一个主要任务,就是回答“火星是否存在过生命或能支持生命的环境?”这一科学问题。为此,它将利用其所携带的相关仪器对火星表面及浅表层环境开展探测。与荒凉沉寂的火星表面不同,我们栖息的地球表面热闹非凡:这里溪水潺潺、草木枯荣、人头攒动。然而,人类世居于此,人类同样也障目于此。对于脚下这片生机勃勃的大地,我们常常一叶障目、不见泰山。

我们生活的近地表层是五大圈层(大气圈、生物圈、土壤圈、水圈和岩石圈)交汇融通的区域:物质循环、能量流动、生物信息传递等过程在这里相互耦合嵌套。无论是长到以十万年、百万年甚至亿年为单位计算的地质运动,还是短到瞬息万变的化学反应,都曾改变或者正在改变这里的一切。正是有了这些似乎永不停歇的反应过程,沧海变成桑田、土壤孕育万物的故事才能一次次上演,人类绵延不息的生存繁衍才能为可能。

近地表圈层是地球环境与人类 社会 相互作用最直接也最深刻的地球表层区域,既是人类生存和发展的立足之本,也是水、食物、能源等资源的供应之源,对于维持人类 社会 的可持续发展具有极端重要性。为了深入理解这一复杂而又开放的系统,地球科学家提出了“地球关键带(Earth’s Critical Zone)”的概念。那么,到底什么是地球关键带?为什么要研究地球关键带?地球关键带科学研究已经取得了哪些进展?未来还有哪些问题值得研究?

地球关键带:定义与功能

地球关键带是指从地下水底部或者土壤—岩石交界面一直向上延伸至植被冠层顶部的连续体域 (National Research Council, 2001),包括岩石圈、水圈、土壤圈、生物圈和大气圈等五大圈层交汇的异质性区域(图1)。在水平方向上,可以被森林、农地、荒漠、河流、湖泊、海岸带与浅海环境所覆盖,由于地域分异规律的存在,它的组成表现出很强的地表差异性。例如我国的喀斯特关键带多峰丛洼地、土层十分浅薄;南方红壤关键带丘陵起伏,土壤十分发育且多呈酸性反应;黄土高原关键带千沟万壑、黄土的厚度可达数百米。然而,无论是哪一种关键带,土壤始终是连接其他要素的核心单元;物质在水的驱动下参与生物地球化学循环,进而行使生态功能、提供生态系统服务。

图1 地球关键带结构示意图:地表圈层的交汇区域构成了关键带,水驱动物质在其中进行循环和流动。

从功能上来讲,因为关键带对于维持地球陆地生态系统的运转和人类生存发展至关重要,所以被称作地球关键带。具体而言,关键带的功能可以分为供给、支持、调节和文化服务等四个方面。供给服务是指受益者从关键带系统中获取有益的产品,例如淡水、食物、纤维和燃料;支持服务是其他服务发挥作用的必要前提,包括植物的生长、土壤的形成与演化、元素的生物地球化学循环等过程;调节服务是指对从关键带系统中获取的各种产品的*,比如关键带对淡水数量和质量、大气组成和气候变化的*与响应;文化服务则是指人类从关键带系统中获取的感官体验,例如休闲 娱乐 、文化教育、 旅游 打卡等(Field et al. , 2015)。试想,如果没有关键带的存在,地球将与荒凉的地外星体无异,该是多么的了无生趣?!

地球关键带科学:地球表层系统科学研究的新契机

地球表层系统中的水、土壤、大气、生物、岩石等在地球内外部能量驱动下的相互作用和演变不但是维系自然资源供给的基础,也发挥着不可替代的生态功能。然而,随着人类 社会 的不断发展,资源耗竭、环境恶化和生态系统退化等问题日益成为制约 社会 可持续发展的关键瓶颈。例如,东北地区的黑土地是我国最为肥沃的土壤,有着“北大仓”的美誉,对于维系我国粮食安全具有重要的作用,但是由于长期不合理的利用,导致土壤不断退化,黑土“变瘦”、“变薄”、“变硬”等现象尤为突出,严重威胁当地甚至全国的农业可持续发展。又如我国南方广袤的红壤地区,占国土面积的23%,水热资源丰富,供养着我国40%的人口,但是由于管理利用不善,导致水土等自然资源退化和配置不协调等问题凸显(张甘霖 et al. , 2019)。而对于西北干旱地区来说,水资源的短缺与时空分布不均*经济 社会 发展则是更需要化解的突出矛盾。

理解地球表层系统中各个要素的现状、演变过程和相互作用是实现关键带过程*和资源可持续利用的必要前提。传统针对地表系统的研究,有专门研究各个单一要素的学科,例如水文学、土壤学、大气科学、生命科学、岩石矿物学等。这些学科各自相对独立研究地表各要素,为充分理解它们的性质、现状和功能等奠定了扎实的基础。然而,这种以要素为核心的研究范式在一定程度上*了对于整个系统的组成与功能以及各个要素之间相互作用的全面理解。2001年,美国国家研究理事会在《地球科学基础研究机遇》中正式提出“地球关键带”的理念与方*,为研究上述问题开辟了新的道路,为地球表层系统科学研究提供了一个可以操作的实体框架,前述地球科学各分支学科之间从此多了一座便于沟通的桥梁,因此极大地促进了地表圈层多学科综合研究。地球关键带科学被认为是21世纪地球科学研究的重点领域,也是新时期我国环境地球学科的优先发展领域。2020年,美国国家科学院、工程院和医学院发布题为《时域地球:美国国家科学基金会地球科学十年愿景》的报告,建议继续将“地球关键带如何影响气候?”这一问题作为优先资助方向之一。

地球关键带科学:科学问题与研究平台

地球关键带科学是多学科研究的系统集成,能够解决单一学科所不能解决的科学问题。关键带研究的总体目标是观测表层系统中耦合的各种生物地球化学过程,试图理解这个生命支撑系统的形成与演化、对气候变化和人类干扰的响应,并最终预测其未来变化。Banwart et al. (2012)总结了关键带科学研究的六大问题,将其分为短期和长期两个方面:

短期科学问题: (1)什么控制了关键带的抗性、响应和恢复力及其耦合功能(包括地球物理、地球化学和生态功能),以及应对气候变化和人类干扰的能力?如何通过观测来量化上述过程与功能,并用数学模型预测这些过程的相互作用和未来变化?(2)如何集成传感器技术、电子网络化信息基础设施和模型等来模拟和预测陆地生态系统的基本变量?(3)如何集成自然科学、 社会 科学、工程学和技术应用等方面的理论、数据和数学模型,以模拟、评估和管理对人类 社会 有益的关键带产品和服务? 长期科学问题: (1)地质演化和古生物如何构建并维持关键带中生态系统的功能和可持续性发展的基础?(2)分子尺度的关键带过程是如何主宰关键带在垂直空间上各个要素(包括地上植物、土壤、含水层和风化层)间的物质循环和能量传递的?又是如何影响流域和含水层演化的?(3)如何集成从分子到全球尺度的理论和数据,来理解地表的演化过程并预测未来变化以及其行星效应?

图2 关键带观测站研究示意图:通过天-地一体化的观测技术和模型模拟等方法,研究地球关键带的结构、物质循环和生态环境功能。

地球关键带观测站是开展关键带科学研究的重要平台,通常以流域为基本研究单元。通过在流域尺度建立野外实验室,监测流域中的水文、气象、植被、岩石风化物和土壤等要素来获取观测资料,可以研究表层地球系统中相互耦合的各种生物地球化学过程(Giardino 和Houser, 2015),并最终模拟和预测其未来动态(Goddéris和Brantley, 2013)。近年来,国际上地球关键带观测站的建设与研究取得了长足的进步。自第一个真正意义上的地球关键带观测站于2007年在美国正式建立以来,欧盟、德国、法国、澳大利亚等国纷纷开始建立自己的关键带观测站(网络),总体数量预计达65个以上。

2014 年,在国家自然科学基金委员会与英国自然环境研究理事会重大国际合作研究计划项目“地球关键带中水和土壤的生态服务功能维持机理研究”的资助下,中国以国家生态系统研究网络为基础,正式设立了5 个地球关键带观测站,涉及黄土高原、西南喀斯特地区、宁波城郊区和南方红壤区(图2)等4种不同环境。近年来,位于一些其他区域的地球关键带观测站也逐渐建立起来,如青海湖、江汉平原、黑土、环渤海滨海、华北平原、燕山山地等。未来还需要继续在荒漠-绿洲区、温带草原、热带岛屿和青藏高原等典型地区建立关键带观测站,形成更加完整的、具有中国特色的地球关键带观测网络,为进一步研究关键带科学问题和培养相关人才提供重要平台。

地球关键带科学:研究进展与展望

当前,随着气候变化和人类活动对自然生态系统影响的加强,地球关键带的自然演变过程受到进一步干预,产生了一系列的生态环境问题。为了应对这些挑战,地球科学家们对关键带的研究也在进一步加强。

我国人口众多,自然资源禀赋有限且区域分布极不均衡,如何实现自然资源的协调配置和可持续利用是亟待解决的关键问题。关键带科学为解决这一问题开辟了新的道路,但是不同类型关键带的形成、演化、结构、耦合过程与功能等方面的研究,特别是在人类活动和气候变化影响下的变化特征,仍需要进一步 探索 。遥望恒河沙数的星空,“祝融”号此刻正在火星这颗红色星球的表面踱步,替我们打量着这个可能的未来家园。随着 科技 的进步,人类在不远的将来登陆火星似乎已经不再是一个难以企及的梦想。类似地,为了支持人类在火星等地外星球表面的生存和发展,“行星关键带”的形成与演化可能也会成为重要的研究方向。

参考文献

1. Banwart, S., Chorover, J., Sparks, D., White, T., 2012. Sustaining Earth’s Critical Zone. Report of the International Critical Zone Observatory Workshop, Delaware, USA.

2. Field, J.P., Breshears, D.D., Law, D.J., Villegas, J.C., López-Hoffman, L., Brooks, P.D., Chorover, J., Barron-Gafford, G.A., Gallery, R.E., Litvak, M.E., Lybrand, R.A., McIntosh, J.C., Meixner, T., Niu, G.Y., Papuga, S.A., Pelletier, J.D., Rasmussen, C.R., Troch, P.A., 2015. Critical Zone services: Expanding context, constraints, and currency beyond ecosystem services. Vadose Zone Journal 14, 1-7.

3. Giardino, J.R., Houser, C., 2015. Principles and dynamics of the critical zone. Elsevier.

4. Goddéris, Y., Brantley, S.L., 2013. Earthcasting the future critical zone. Elementa Science of the Anthropocene 1, 19.

5. National Research Council, 2001. Basic research opportunities in Earth Science. National Academy Press, Washington, D. C.

6. Richardson, M., Kumar, P., 2017. Critical Zone services as environmental assessment criteria in intensively managed landscapes. Earth’s Future 5, 617-632.

7. Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C., Lawrence, C., Moore, J., Perdrial, J., Sullivan, P., Thompson, A., Jin, L., Bolton, E.W., Brantley, S.L., Dietrich, W.E., Mayer, K.U., Steefel, C.I., Valocchi, A., Zachara, J., Kocar, B., McIntosh, J., Tutolo, B.M., Kumar, M., Sonnenthal, E., Bao, C. and Beisman, J., 2017. Expanding the role of reactive transport models in critical zone processes. Earth-Science Reviews, 165: 280-301.

8. Wu, H., Song, X., Zhao, X., Peng, X., Zhou, H., Hallett, P.D., Hodson, M.E., Zhang, G.L., 2019. Accumulation of nitrate and dissolved organic nitrogen at depth in a red soil Critical Zone. Geoderma 337, 1175-1185.

9. Yang, S., Wu, H., Dong, Y., Zhao, X., Song, X., Yang, J., Hallett, P.D., Zhang, G.L., 2020b. Deep nitrate accumulation in a highly weathered subtropical Critical Zone depends on the regolith structure and planting year. Environmental Science & Technology 54, 13739-13747.

10. 张甘霖, 朱永官, 邵明安, 2019. 地球关键带过程与水土资源可持续利用的机理. 中国科学: 地球科学 49, 1674-7240.

11. 张甘霖, 宋效东, 吴克宁, 2021. 地球关键带分类方法与中国案例研究. 中国科学: 地球科学. DOI: 10.1360/SSTe-2020-0249.

热心网友 时间:2023-10-07 13:06

地球表层是大气圈、生物圈、土壤圈、水圈交汇的异质性地带,是生命活动最为旺盛的热点区域,被称为“地球关键带”。它是21世纪地球科学研究的重点领域,也是新时期我国环境地球学科的优先发展领域。

2021年5月15日,在经历了296天的太空之旅后,中国人自己研制的“天问”一号火星探测器所携带的“祝融号”火星车及其着陆组合体,成功抵达中国人问天之路的关键一站——火星。“祝融号”的一个主要任务,就是回答“火星是否存在过生命或能支持生命的环境?”这一科学问题。为此,它将利用其所携带的相关仪器对火星表面及浅表层环境开展探测。与荒凉沉寂的火星表面不同,我们栖息的地球表面热闹非凡:这里溪水潺潺、草木枯荣、人头攒动。然而,人类世居于此,人类同样也障目于此。对于脚下这片生机勃勃的大地,我们常常一叶障目、不见泰山。

我们生活的近地表层是五大圈层(大气圈、生物圈、土壤圈、水圈和岩石圈)交汇融通的区域:物质循环、能量流动、生物信息传递等过程在这里相互耦合嵌套。无论是长到以十万年、百万年甚至亿年为单位计算的地质运动,还是短到瞬息万变的化学反应,都曾改变或者正在改变这里的一切。正是有了这些似乎永不停歇的反应过程,沧海变成桑田、土壤孕育万物的故事才能一次次上演,人类绵延不息的生存繁衍才能为可能。

近地表圈层是地球环境与人类 社会 相互作用最直接也最深刻的地球表层区域,既是人类生存和发展的立足之本,也是水、食物、能源等资源的供应之源,对于维持人类 社会 的可持续发展具有极端重要性。为了深入理解这一复杂而又开放的系统,地球科学家提出了“地球关键带(Earth’s Critical Zone)”的概念。那么,到底什么是地球关键带?为什么要研究地球关键带?地球关键带科学研究已经取得了哪些进展?未来还有哪些问题值得研究?

地球关键带:定义与功能

地球关键带是指从地下水底部或者土壤—岩石交界面一直向上延伸至植被冠层顶部的连续体域 (National Research Council, 2001),包括岩石圈、水圈、土壤圈、生物圈和大气圈等五大圈层交汇的异质性区域(图1)。在水平方向上,可以被森林、农地、荒漠、河流、湖泊、海岸带与浅海环境所覆盖,由于地域分异规律的存在,它的组成表现出很强的地表差异性。例如我国的喀斯特关键带多峰丛洼地、土层十分浅薄;南方红壤关键带丘陵起伏,土壤十分发育且多呈酸性反应;黄土高原关键带千沟万壑、黄土的厚度可达数百米。然而,无论是哪一种关键带,土壤始终是连接其他要素的核心单元;物质在水的驱动下参与生物地球化学循环,进而行使生态功能、提供生态系统服务。

图1 地球关键带结构示意图:地表圈层的交汇区域构成了关键带,水驱动物质在其中进行循环和流动。

从功能上来讲,因为关键带对于维持地球陆地生态系统的运转和人类生存发展至关重要,所以被称作地球关键带。具体而言,关键带的功能可以分为供给、支持、调节和文化服务等四个方面。供给服务是指受益者从关键带系统中获取有益的产品,例如淡水、食物、纤维和燃料;支持服务是其他服务发挥作用的必要前提,包括植物的生长、土壤的形成与演化、元素的生物地球化学循环等过程;调节服务是指对从关键带系统中获取的各种产品的*,比如关键带对淡水数量和质量、大气组成和气候变化的*与响应;文化服务则是指人类从关键带系统中获取的感官体验,例如休闲 娱乐 、文化教育、 旅游 打卡等(Field et al. , 2015)。试想,如果没有关键带的存在,地球将与荒凉的地外星体无异,该是多么的了无生趣?!

地球关键带科学:地球表层系统科学研究的新契机

地球表层系统中的水、土壤、大气、生物、岩石等在地球内外部能量驱动下的相互作用和演变不但是维系自然资源供给的基础,也发挥着不可替代的生态功能。然而,随着人类 社会 的不断发展,资源耗竭、环境恶化和生态系统退化等问题日益成为制约 社会 可持续发展的关键瓶颈。例如,东北地区的黑土地是我国最为肥沃的土壤,有着“北大仓”的美誉,对于维系我国粮食安全具有重要的作用,但是由于长期不合理的利用,导致土壤不断退化,黑土“变瘦”、“变薄”、“变硬”等现象尤为突出,严重威胁当地甚至全国的农业可持续发展。又如我国南方广袤的红壤地区,占国土面积的23%,水热资源丰富,供养着我国40%的人口,但是由于管理利用不善,导致水土等自然资源退化和配置不协调等问题凸显(张甘霖 et al. , 2019)。而对于西北干旱地区来说,水资源的短缺与时空分布不均*经济 社会 发展则是更需要化解的突出矛盾。

理解地球表层系统中各个要素的现状、演变过程和相互作用是实现关键带过程*和资源可持续利用的必要前提。传统针对地表系统的研究,有专门研究各个单一要素的学科,例如水文学、土壤学、大气科学、生命科学、岩石矿物学等。这些学科各自相对独立研究地表各要素,为充分理解它们的性质、现状和功能等奠定了扎实的基础。然而,这种以要素为核心的研究范式在一定程度上*了对于整个系统的组成与功能以及各个要素之间相互作用的全面理解。2001年,美国国家研究理事会在《地球科学基础研究机遇》中正式提出“地球关键带”的理念与方*,为研究上述问题开辟了新的道路,为地球表层系统科学研究提供了一个可以操作的实体框架,前述地球科学各分支学科之间从此多了一座便于沟通的桥梁,因此极大地促进了地表圈层多学科综合研究。地球关键带科学被认为是21世纪地球科学研究的重点领域,也是新时期我国环境地球学科的优先发展领域。2020年,美国国家科学院、工程院和医学院发布题为《时域地球:美国国家科学基金会地球科学十年愿景》的报告,建议继续将“地球关键带如何影响气候?”这一问题作为优先资助方向之一。

地球关键带科学:科学问题与研究平台

地球关键带科学是多学科研究的系统集成,能够解决单一学科所不能解决的科学问题。关键带研究的总体目标是观测表层系统中耦合的各种生物地球化学过程,试图理解这个生命支撑系统的形成与演化、对气候变化和人类干扰的响应,并最终预测其未来变化。Banwart et al. (2012)总结了关键带科学研究的六大问题,将其分为短期和长期两个方面:

短期科学问题: (1)什么控制了关键带的抗性、响应和恢复力及其耦合功能(包括地球物理、地球化学和生态功能),以及应对气候变化和人类干扰的能力?如何通过观测来量化上述过程与功能,并用数学模型预测这些过程的相互作用和未来变化?(2)如何集成传感器技术、电子网络化信息基础设施和模型等来模拟和预测陆地生态系统的基本变量?(3)如何集成自然科学、 社会 科学、工程学和技术应用等方面的理论、数据和数学模型,以模拟、评估和管理对人类 社会 有益的关键带产品和服务? 长期科学问题: (1)地质演化和古生物如何构建并维持关键带中生态系统的功能和可持续性发展的基础?(2)分子尺度的关键带过程是如何主宰关键带在垂直空间上各个要素(包括地上植物、土壤、含水层和风化层)间的物质循环和能量传递的?又是如何影响流域和含水层演化的?(3)如何集成从分子到全球尺度的理论和数据,来理解地表的演化过程并预测未来变化以及其行星效应?

图2 关键带观测站研究示意图:通过天-地一体化的观测技术和模型模拟等方法,研究地球关键带的结构、物质循环和生态环境功能。

地球关键带观测站是开展关键带科学研究的重要平台,通常以流域为基本研究单元。通过在流域尺度建立野外实验室,监测流域中的水文、气象、植被、岩石风化物和土壤等要素来获取观测资料,可以研究表层地球系统中相互耦合的各种生物地球化学过程(Giardino 和Houser, 2015),并最终模拟和预测其未来动态(Goddéris和Brantley, 2013)。近年来,国际上地球关键带观测站的建设与研究取得了长足的进步。自第一个真正意义上的地球关键带观测站于2007年在美国正式建立以来,欧盟、德国、法国、澳大利亚等国纷纷开始建立自己的关键带观测站(网络),总体数量预计达65个以上。

2014 年,在国家自然科学基金委员会与英国自然环境研究理事会重大国际合作研究计划项目“地球关键带中水和土壤的生态服务功能维持机理研究”的资助下,中国以国家生态系统研究网络为基础,正式设立了5 个地球关键带观测站,涉及黄土高原、西南喀斯特地区、宁波城郊区和南方红壤区(图2)等4种不同环境。近年来,位于一些其他区域的地球关键带观测站也逐渐建立起来,如青海湖、江汉平原、黑土、环渤海滨海、华北平原、燕山山地等。未来还需要继续在荒漠-绿洲区、温带草原、热带岛屿和青藏高原等典型地区建立关键带观测站,形成更加完整的、具有中国特色的地球关键带观测网络,为进一步研究关键带科学问题和培养相关人才提供重要平台。

地球关键带科学:研究进展与展望

当前,随着气候变化和人类活动对自然生态系统影响的加强,地球关键带的自然演变过程受到进一步干预,产生了一系列的生态环境问题。为了应对这些挑战,地球科学家们对关键带的研究也在进一步加强。

我国人口众多,自然资源禀赋有限且区域分布极不均衡,如何实现自然资源的协调配置和可持续利用是亟待解决的关键问题。关键带科学为解决这一问题开辟了新的道路,但是不同类型关键带的形成、演化、结构、耦合过程与功能等方面的研究,特别是在人类活动和气候变化影响下的变化特征,仍需要进一步 探索 。遥望恒河沙数的星空,“祝融”号此刻正在火星这颗红色星球的表面踱步,替我们打量着这个可能的未来家园。随着 科技 的进步,人类在不远的将来登陆火星似乎已经不再是一个难以企及的梦想。类似地,为了支持人类在火星等地外星球表面的生存和发展,“行星关键带”的形成与演化可能也会成为重要的研究方向。

参考文献

1. Banwart, S., Chorover, J., Sparks, D., White, T., 2012. Sustaining Earth’s Critical Zone. Report of the International Critical Zone Observatory Workshop, Delaware, USA.

2. Field, J.P., Breshears, D.D., Law, D.J., Villegas, J.C., López-Hoffman, L., Brooks, P.D., Chorover, J., Barron-Gafford, G.A., Gallery, R.E., Litvak, M.E., Lybrand, R.A., McIntosh, J.C., Meixner, T., Niu, G.Y., Papuga, S.A., Pelletier, J.D., Rasmussen, C.R., Troch, P.A., 2015. Critical Zone services: Expanding context, constraints, and currency beyond ecosystem services. Vadose Zone Journal 14, 1-7.

3. Giardino, J.R., Houser, C., 2015. Principles and dynamics of the critical zone. Elsevier.

4. Goddéris, Y., Brantley, S.L., 2013. Earthcasting the future critical zone. Elementa Science of the Anthropocene 1, 19.

5. National Research Council, 2001. Basic research opportunities in Earth Science. National Academy Press, Washington, D. C.

6. Richardson, M., Kumar, P., 2017. Critical Zone services as environmental assessment criteria in intensively managed landscapes. Earth’s Future 5, 617-632.

7. Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C., Lawrence, C., Moore, J., Perdrial, J., Sullivan, P., Thompson, A., Jin, L., Bolton, E.W., Brantley, S.L., Dietrich, W.E., Mayer, K.U., Steefel, C.I., Valocchi, A., Zachara, J., Kocar, B., McIntosh, J., Tutolo, B.M., Kumar, M., Sonnenthal, E., Bao, C. and Beisman, J., 2017. Expanding the role of reactive transport models in critical zone processes. Earth-Science Reviews, 165: 280-301.

8. Wu, H., Song, X., Zhao, X., Peng, X., Zhou, H., Hallett, P.D., Hodson, M.E., Zhang, G.L., 2019. Accumulation of nitrate and dissolved organic nitrogen at depth in a red soil Critical Zone. Geoderma 337, 1175-1185.

9. Yang, S., Wu, H., Dong, Y., Zhao, X., Song, X., Yang, J., Hallett, P.D., Zhang, G.L., 2020b. Deep nitrate accumulation in a highly weathered subtropical Critical Zone depends on the regolith structure and planting year. Environmental Science & Technology 54, 13739-13747.

10. 张甘霖, 朱永官, 邵明安, 2019. 地球关键带过程与水土资源可持续利用的机理. 中国科学: 地球科学 49, 1674-7240.

11. 张甘霖, 宋效东, 吴克宁, 2021. 地球关键带分类方法与中国案例研究. 中国科学: 地球科学. DOI: 10.1360/SSTe-2020-0249.

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
妇科的止血药有哪些 妇科用的止血药有哪些 妇科止血药的功效 人艰不拆是啥意思 汉酱51 度酱香型白酒多少钱?味道怎么样? 穿凉鞋可以穿袜子吗?凉鞋发黄怎么变白? 爱奇艺vip投屏限制怎么办 爱奇艺vip投屏视频限制怎么解决 支付宝怎样解除关联的支付宝账号? 剑圣叫什么名字 ...政策?这个政策的目的是什么?会对经济有什么影响? 这个药叫什么名字? 独轮车的英文翻译 为什么会有静电(接触为什么会产生静电) 在古代人们怎么样防静电,在古代静电被称为什么。 一路有你,因为有你,人生的旅途才不那么冷清是什么意思 谁帮我弄一个索隆和罗宾的情侣头像??、 跪求大神还能不能找到这个系列的头像(海贼王的) 磁石鞋垫为什么可以减少静电的产生? 海贼 罗宾头像 这个艾灸产品怎么选?选哪个品牌好? 艾灸仪器品牌排行榜给我们推荐的你们都看吗?那你们选的是哪个牌子的? 杭州注册公司哪个商务秘书公司靠谱点 杭州尚禾家具有限公司怎么样? 艾灸产品怎么选?哪个品牌好? 录入记账凭证自动生成科目汇总表,明细账,总账EXCEL模板! 科目汇总表 excel 电影 忘川茶舍之兽神诅咒 中的卫辞是谁演的 跪求董璇演过的电影大全,【在线观看】免费百度云资源 求《忘川茶舍》简小扇版全集? 多部剧集连夜“裸宣”上线 优爱腾开启7月古装网剧恶战 骨密度检测的三个东西不知是什么 Fem Neck,Troch,Wards TRI 三个T/Z值 不一样 请指教 单反可以拍全幅呢 用wilson Ultra Slam网球拍,打几次有点磨损勒,怎么保养玄线撒? 走平台是什么意思 什么是走平台 被蜜蜂哲了一下怎样消肿止痛 走平台会被骗吗 被蜜蜂蜇了一下怎么办? 被蜜蜂蛰了一下,怎么弄 济南社会工作者的报考条件是什么? 桁架多少钱一个,是按照个数还是米数来算的 在vb中如何判断一个桁架是否静定 一个外形对称静定桁架,荷载反对称,则对称轴处的竖杆的内力为零,为什么?怎么分析? 君子之交美丽如斯是什么意思 Excel三国杀曹操传中的武将献帝弓兵等哪里能找到高清原画? 麻烦把常用的日语给我写出来好吗,日文包括读音。拜托了。 这是冰洲石吗!?如是 冰洲球和水晶球的区别 冰洲石的伴生矿有哪些? 成都大丰属于哪个区 成都大丰属于什么区 请问从大连金家街快轨下车 到 大连市沙河口区西南路通信电缆厂怎么走呀。。