如何对指数函数的反常积分? 怎么得来的
发布网友
发布时间:2022-10-28 11:22
我来回答
共1个回答
热心网友
时间:2023-10-06 07:40
(1)
lim [3-√(9+xy)]/(xy)=
x->0
y->0
lim [3-√(9+xy)]/(xy)=
xy->0
lim [3-√(9+xy)][3+√(9+xy)]/{(xy)*[3+√(9+xy)]}= 分子有理化
xy->0
lim [9-(9+xy)]/{(xy)*[3+√(9+xy)]}=
xy->0
lim -1/[3+√(9+xy)]=-1/(3+3)=-1/6
xy->0
答案就是-1/6
(4)u(x,y,z)=(x/y)^(1/x)=e^[1/x*ln(x/y)]
用符号"p"表示求偏导,则有
pu/px=e^[1/x*ln(x/y)]*[-1/x²*ln(x/y)+1/x*1/(x/y)*1/y]=(x/y)^(1/x)*[1-ln(x/y)]/x²
pu/py=e^[1/x*ln(x/y)]*[1/x*1/(x/y)*(-x)/y²]=(x/y)^(1/x)*[-1/(xy)]
pu/pz=0
将x=y=z=1代入,分别得到1,-1,0
故所求梯度为
1i+(-1)j+0k=i-j
热心网友
时间:2023-10-06 07:40
(1)
lim [3-√(9+xy)]/(xy)=
x->0
y->0
lim [3-√(9+xy)]/(xy)=
xy->0
lim [3-√(9+xy)][3+√(9+xy)]/{(xy)*[3+√(9+xy)]}= 分子有理化
xy->0
lim [9-(9+xy)]/{(xy)*[3+√(9+xy)]}=
xy->0
lim -1/[3+√(9+xy)]=-1/(3+3)=-1/6
xy->0
答案就是-1/6
(4)u(x,y,z)=(x/y)^(1/x)=e^[1/x*ln(x/y)]
用符号"p"表示求偏导,则有
pu/px=e^[1/x*ln(x/y)]*[-1/x²*ln(x/y)+1/x*1/(x/y)*1/y]=(x/y)^(1/x)*[1-ln(x/y)]/x²
pu/py=e^[1/x*ln(x/y)]*[1/x*1/(x/y)*(-x)/y²]=(x/y)^(1/x)*[-1/(xy)]
pu/pz=0
将x=y=z=1代入,分别得到1,-1,0
故所求梯度为
1i+(-1)j+0k=i-j
热心网友
时间:2023-10-06 07:40
(1)
lim [3-√(9+xy)]/(xy)=
x->0
y->0
lim [3-√(9+xy)]/(xy)=
xy->0
lim [3-√(9+xy)][3+√(9+xy)]/{(xy)*[3+√(9+xy)]}= 分子有理化
xy->0
lim [9-(9+xy)]/{(xy)*[3+√(9+xy)]}=
xy->0
lim -1/[3+√(9+xy)]=-1/(3+3)=-1/6
xy->0
答案就是-1/6
(4)u(x,y,z)=(x/y)^(1/x)=e^[1/x*ln(x/y)]
用符号"p"表示求偏导,则有
pu/px=e^[1/x*ln(x/y)]*[-1/x²*ln(x/y)+1/x*1/(x/y)*1/y]=(x/y)^(1/x)*[1-ln(x/y)]/x²
pu/py=e^[1/x*ln(x/y)]*[1/x*1/(x/y)*(-x)/y²]=(x/y)^(1/x)*[-1/(xy)]
pu/pz=0
将x=y=z=1代入,分别得到1,-1,0
故所求梯度为
1i+(-1)j+0k=i-j