问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

三角函数的定义与性质

发布网友 发布时间:2022-04-23 07:51

我来回答

2个回答

热心网友 时间:2022-06-17 22:58

定义:
在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有
正弦函数 sinθ=y/r
余弦函数 cosθ=x/r
正切函数 tanθ=y/x
余切函数 cotθ=x/y
正割函数 secθ=r/x
余割函数 cscθ=r/y
(斜边为r,对边为y,邻边为x。)
以及两个不常用,已趋于被淘汰的函数:
正矢函数 versinθ =1-cosθ
余矢函数 coversθ =1-sinθ
正弦(sin):角α的对边比上斜边
余弦(cos):角α的邻边比上斜边
正切(tan):角α的对边比上邻边
余切(cot):角α的邻边比上对边
正割(sec):角α的斜边比上邻边
余割(csc):角α的斜边比上对边
[编辑本段]同角三角函数间的基本关系式:
·平方关系:
sin�0�5(α)+cos�0�5(α)=1 cos�0�5(a)=(1+cos2a)/2
tan�0�5(α)+1=sec�0�5(α) sin�0�5(a)=(1-cos2a)/2
cot�0�5(α)+1=csc�0�5(α)
·积的关系:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,
余弦等于角A的邻边比斜边
正切等于对边比邻边,
·三角函数恒等变形公式
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·三角和的三角函数:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
·辅助角公式:
Asinα+Bcosα=(A�0�5+B�0�5)^(1/2)sin(α+t),其中
sint=B/(A�0�5+B�0�5)^(1/2)
cost=A/(A�0�5+B�0�5)^(1/2)
tant=B/A
Asinα+Bcosα=(A�0�5+B�0�5)^(1/2)cos(α-t),tant=A/B
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos�0�5(α)-sin�0�5(α)=2cos�0�5(α)-1=1-2sin�0�5(α)
tan(2α)=2tanα/[1-tan�0�5(α)]
·三倍角公式:
sin(3α)=3sinα-4sin�0�6(α)
cos(3α)=4cos�0�6(α)-3cosα
·半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降幂公式
sin�0�5(α)=(1-cos(2α))/2=versin(2α)/2
cos�0�5(α)=(1+cos(2α))/2=covers(2α)/2
tan�0�5(α)=(1-cos(2α))/(1+cos(2α))
·万能公式:
sinα=2tan(α/2)/[1+tan�0�5(α/2)]
cosα=[1-tan�0�5(α/2)]/[1+tan�0�5(α/2)]
tanα=2tan(α/2)/[1-tan�0�5(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos�0�5α
1-cos2α=2sin�0�5α
1+sinα=(sinα/2+cosα/2)�0�5
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin�0�5(α)+sin�0�5(α-2π/3)+sin�0�5(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx
证明:
左边=2sinx(cosx+cos2x+...+cosnx)/2sinx
=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)
=[sin(n+1)x+sinnx-sinx]/2sinx=右边
等式得证
sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx
证明:
左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)
=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边
等式得证
[编辑本段]三角函数的诱导公式
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
[编辑本段]正余弦定理
正弦定理是指在一个三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .
余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA
角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边
斜边与邻边夹角a
sin=y/r
无论y>x或y≤x
无论a多大多小可以任意大小
正弦的最大值为1 最小值为-1
周期:
正弦,余弦,正割,余割为2pi
正切,余切为pi

热心网友 时间:2022-06-17 22:58

三角函数的图象和性质

复习指导

三角函数的图象和性质是平面三角的主体内容,它是代数中学过的函数的重要补充.本章复习的重点是进一步熟练和运用代数中已学过的研究函数的基本理论和方法,与三角变换配合由三角函数组成的较复杂函数的性质,在诸多性质中,三角函数的周期性和对应法则的“多对一”性,又是这里的特点所在,复习中不仅要注意知识、方法的综合性,还要注意它们在数学、生产、生活中的应用.

周期函数和最小正周期是函数性质研究的新课题,不仅要了解它们的意义,明确周期函数,函数值的变化规律,还要掌握周期性的研究对周期函数性质研究的意义,并会求函数的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期.

三角函数指的是,,,等函数,了解它们的图象的特征,会正确使用“五点法”作出它们的图象,并依据图象读出它们的性质,是本章的基础.对于性质的复习,不要平均使用力量,只要强调已学函数理论、方法的运用,强调数形结合的思想,而要把重点放在周期函数表达某些性质的规范要求上.例如,对于,怎么表述它的递增(减)区间,怎么表述它取最大(小)值时的取值集合,怎么由已知的函数值的取值范围,写出角的取值范围来,等等.还可对性质作些延伸,例如,研究它们的无数条对称轴的表示,无数个对称中心的表示等等.

正弦型函数是这里研究的又一个重点,除了会用“五点法”画出它的简图外,还要从图象变换的角度认识它与的图象的关系,对于三种基本的图象变换(平移变换,伸缩变换,对称变换)进一步进行复习和适当提交.

本章复习还要注意适当提交起点,注意把简单的三角变换与有关函数的性质结合起来,注意把三角函数和代数函数组合起来的综合性研究,注意在函数图象和单位圆函数线这两工具中的综合,择优使用.注意从数学或实际问题中概括出来的与正弦曲线有关的问题的研究,并注意立体几何、复数、解析几何等内容,对平面三角要求的必要准备的复习.

本章中数学思想最重要的是数形结合,另外换元的思想,等价变换和化归的思想,以及综合法、分析法、待定系数法等等,在复习中应有所体现.
三角函数有哪些性质?

④单调性:在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减 (3)定义域:R (4)值域:[-1,1](5)最值:当X=2Kπ (K∈Z)时,Y取最大值1;当X=2Kπ +3π /2(K∈Z时,Y取最小值-1 2、余弦函数:(1)图像:(2)性质:①...

三角函数的性质

一、y=sinx 1、奇偶性:奇函数2、图像性质:中心对称:关于点(kπ,0)对称轴对称:关于x=kπ+π/2对称3、单调性:增函数:x∈[2kπ-π/2,2kπ+π/2]减函数:x∈[2kπ+π/2,2kπ+3π/2]二、y=cosx 1、奇偶性:偶函数2、图像性质:中心对称:关于点(kπ+π/2,0)对称轴对称:...

三角函数的性质

总而言之,三角函数是一类重要的函数,具有周期性、奇偶性、对称性、单调性、极值等性质,这些性质在实际应用中有着重要的作用。

三角函数定义是什么 三角函数的定义

三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。三角函数简介 三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边...

三角函数定义是什么 什么是三角函数

1、三角函数是基本初等函数之一是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,...

三角函数的图像与性质

1、三角函数是数学中属于初等函数中的超越函数的函数,它们的本质是任何角的集合与一个比值的集合的变量之间的映射。2、通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域;另一种定义是在直角三角形中,但并不完全。

三角函数有哪些定义和性质?

根据正弦函数的定义,sinθ = 对边/斜边,代入已知值得 sinθ = x/5。根据余弦函数的定义,cosθ = 邻边/斜边,代入已知值得 cosθ = 3/5。观察三角形结构可知,正弦和余弦对应的角度θ是同一个角度。所以我们可以通过 sinθ 和 cosθ 相关性质来求解:sin²θ + cos²θ = 1 (...

【三角函数】三角函数图像,性质及变换

三角函数的图像与性质是学习的重难点。图像的性质理解后,三角函数运算将更加轻松。首先,正弦函数图像及性质包括:定义域:[-π/2, π/2] 或 [-90°, 90°]值域:[-1, 1]奇偶性:奇 对称中心:πk 对称轴:πk + π/2 单调增区间:[-π/2 + 2πk, π/2 + 2πk]单调减区间:[...

三角函数的性质

1、奇偶性:奇函数 2、图像性质:中心对称:关于点(kπ,0)对称 轴对称:关于x=kπ+π/2对称 3、单调性:增函数:x∈[2kπ-π/2,2kπ+π/2]减函数:x∈[2kπ+π/2,2kπ+3π/2]二、y=cosx 1、奇偶性:偶函数 2、图像性质:中心对称:关于点(kπ+π/2,0)对称 轴对称:关于x=k...

三角函数的图像与性质

1、正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:(0,0)(π/2,1)(π,0)(3π/2,-1)(2π,0)。2、三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展...

三角函数定义和特殊值 三角函数的基本概念和性质 三角函数及其性质 三角函数定义百度文库 三角涵数定义和性质 弧度的定义 三角函数定义及性质 反三角函数定义域值域和基本性质 三角函数余弦函数图像和性质
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
刀塔传奇攻略 刀塔传奇圣堂刺客属性怎么样[图]介绍_刀塔传奇攻略 刀塔... 刀塔传奇圣堂刺客技能加点解析介绍_刀塔传奇圣堂刺客技能加点解析是什么... 天谕手游圣堂雷罡和地罡哪个好 走哪个流派更吃香 谁说圣堂不能当DPS 雷罡输出圣堂养成教学 如何成为一名合格的雷罡圣堂 输出技巧分享 烟花三月下扬州是哪首古诗 巴中市巴州区大学中专招生委员会办公室单位简介 四川巴中市巴州区的高考报名号前几位是多少? 巴中市高考总分多少 求stand and deliver 三角函数定义。公式 三角函数公式的定义式 三角函数定义式是什么 求三角函数的定义? 华为mate40pro4g和荣耀magic3pro至臻那个好些 我想知道三角函数的定义,公式??? 华为mate40和荣耀30pro哪个好 华为mate40标准版和荣耀30pro+怎么选择? 华为mate40和荣耀30pro+那个性价比高? 华为mate40e和华为荣耀哪个速度快? 华为mate40普通版和荣耀30pro+买哪个好? 荣耀magic4pro和华为mate40Epro哪个更值得买? 华为mate40是荣耀系列吗? 华为mate40pro和荣耀magic4pro哪个好? 饺子皮用不完如何存放呢?能放几天呢? 固态硬盘损坏了,可以修复吗? 硬盘坏了,能修吗? 监控硬盘损坏可以维修吗? 硬盘坏了可以维修吗? 电脑硬盘坏了 能修吗? 三角函数所有概念和公式 三角函数公式是什么啊? 三角函数的公试 克扣,接济,唏嘘,稀罕,噩耗,,斥,焦灼,伎俩,颠沛,的拼音怎么写? 鈥淵ou only live once,do what you want to do鈥什么意思 纪梵希n37底部色号会掉漆吗? 纪梵希四宫格散粉求鉴定真假? 纪梵希散粉盖子上的银色logo会掉色吗? 函数单调性的判定方法有哪三种 火还可以组成什么字? 为什么在新加坡买的纪梵希这个粉四宫格是金色的盖子国内的是黑色的? 鈥渂ernie sanders",give the house away是什么意思 如何判断一个函数的的单调性 伙换偏旁会变成哪几个字,谢谢 函数的单调性和奇偶性分别怎么判断? 英语学习鈥斝赂拍 刚买了纪梵希四宫格散粉,外盖是白色的,不应该是黑色黑色纪梵希标志吗?我是不是买到假货了?大家给我看 判断函数单调性的方法有多少种? 详细点解释下用法 谢谢~` 《红楼梦》1鈥 如何判断函数的单调性?