发布网友 发布时间:2022-11-23 06:23
共1个回答
热心网友 时间:2024-12-02 04:17
倍角公式是三角函数中非常实用的一类公式。就是把二倍角的三角函数用本角的三角函数表示出来。接下来分享三角函数倍角公式及证明方法。
Sin2A=2SinA·CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=2tanA/1-tanA^2
sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA
cos2A=cos(A+A)=cosAcosA-sinAsinA=(cosA)^2-(sinA)^2=2(cosA)^2-1=1-2(sinA)^2
tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-(tanA)^2]
sin(A/2)=±√((1-cosA)/2)
cos(A/2)=±√((1+cosA)/2)
tan(A/2)=±√((1-cosA)/((1+cosA))
sinAsinB=-[cos(A+B)-cos(A-B)]/2
cosAcosB=[cos(A+B)+cos(A-B)]/2
sinAcosB=[sin(A+B)+sin(A-B)]/2
cosAsinB=[sin(A+B)-sin(A-B)]/2
sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]
sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]
cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)