发布网友 发布时间:2022-04-23 06:19
共5个回答
热心网友 时间:2023-10-03 08:22
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。
如果一个函数的积分存在,并且有限,就说这个函数是可积的。一般来说,被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至是没有直观几何意义的抽象空间。
微积分是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。
内容主要包括极限、微分学、积分学及其应用。
扩展资料:
积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。
要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。
但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。
微积分学的创立,极大地推动了数学的发展,过去很多用初等数学无法解决的问题,运用微积分,这些问题往往迎刃而解,显示出微积分学的非凡威力。
前面已经提到,一门学科的创立并不是某一个人的业绩,而是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的,微积分也是这样。
参考资料:百度百科-微积分
参考资料:百度百科-积分
热心网友 时间:2023-10-03 08:23
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。
积分发展的动力源自实际应用中的需求。随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。
扩展资料
积分定义
1、黎曼积分
黎曼积分,也就是所说的正常积分、定积分。在实分析中,由黎曼创立的黎曼积分首次对函数在给定区间上的积分给出了一个精确定义。黎曼积分在技术上的某些不足之处可由后来的勒贝格积分得到修补。
2、勒贝格积分
勒贝格积分,是现代数学中的一个积分概念,它将积分运算扩展到任何测度空间中。在最简单的情况下,对一个非负值的函数的积分可以看作是求其函数图像与轴之间的面积。勒贝格积分则将积分运算扩展到其它函数,并且也扩展了可以进行积分运算的函数的范围。
热心网友 时间:2023-10-03 08:23
dx表示x变化无限小的量,其中d表示“微分”,是“derivative(导数)”的第一个字母。
当一个变量x,越来越趋向于一个数值a时,这个趋向的过程无止境的进行,x与a的差值无限趋向于0,就说a是x的极限。这个差值,称它为“无穷小”,它是一个越来越小的过程,一个无限趋向于0的过程,它不是一个很小的数,而是一个趋向于0的过程。
如果x1与x2差距很小,这个小是有限的小。当x1与x2的差距在无止境的减小,无止境的靠近,在靠近的过程中,x1与x2的差距无止境的趋近于0。这时就写成dx,也就是说,Δx是有限小的量,
dx是无限小的量。
微分的几何意义
设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。f'(x0)在表示曲线y=f(x)在切点M(x0,f(x0))处切线的斜率。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,可以用切线段来近似代替曲线段。
由直线点斜式方程可知切线方程为:y-y0=f'(x0)(x-x0),两条互相垂直的直线的斜率之积为-1,而切线与法线垂直,故法线方程为:y-y0=-1/f'(x0)*(x-x0) (f'(x0)≠0)
参考资料来源:百度百科-微分
热心网友 时间:2023-10-03 08:24
微分和积分是高等数学中的两种运算,我举个最通俗最简单,但可能不是很恰当的例子:热心网友 时间:2023-10-03 08:25
微积分主要有三大类分支:极限、微分学、积分学。微积分的基本理论表明了微分和积分是互逆运算。牛顿和莱布尼兹发现了这个定理以后才引起了其他学者对于微积分学的狂热的研究。这个发现使我们在微分和积分之间互相转换。这个基本理论也提供了一个用代数计算许多积分问题的方法,该方法并不真正进行极限运算而是通过发现不定积分。该理论也可以解决一些微分方程的问题,解决未知数的积分。微分问题在科学领域无处不在。追答三个解决的问题不同,极限是求当自变量无限趋近某一数值时,函数与那一数值无限接近.微分(求导)主要是求已知函数的导函数,积分是已知导函数求其原函数.所以微分与积分互为逆运算.导数的本质是函数改变量与自变量改变量的比,当自变量改变量趋近于0时的极限,所以求极限是基础.
推荐参考人民大学赵树藩主编的《微积分》,写得比较简明易懂.