发布网友 发布时间:2022-04-23 06:17
共4个回答
热心网友 时间:2023-08-30 00:09
残差在数理统计中是指实际观察值与估计值(拟合值)之间的差。“残差”蕴含了有关模型基本假设的重要信息。如果回归模型正确的话, 我们可以将残差看作误差的观测值。
它应符合模型的假设条件,且具有误差的一些性质。利用残差所提供的信息,来考察模型假设的合理性及数据的可靠性称为残差分析。
有多少对数据,就有多少个残差。残差分析就是通过残差所提供的信息,分析出数据的可靠性、周期性或其它干扰。
拓展资料:
普通残差
设线性回归模型为
其中Y是由响应变量构成的n维向量,X是
阶设计矩阵,β是p+1维向量,ε是n维随机变量。
回归系数的估计值
,拟合值
为
,其中
,称H为帽子矩阵。残差为
。
这解释了帽子矩阵与残差的关系,因为残差可以通过帽子矩阵与真实值得出。
在回归分析中,测定值与按回归方程预测的值之差,以δ表示。残差δ遵从正态分布N(0,σ2)。(δ-残差的均值)/残差的标准差,称为标准化残差,以δ*表示。δ*遵从标准正态分布N(0,1)。实验点的标准化残差落在(-2,2)区间以外的概率≤0.05。若某一实验点的标准化残差落在(-2,2)区间以外,可在95%置信度将其判为异常实验点,不参与回归直线拟合。
显然,有多少对数据,就有多少个残差。残差分析就是通过残差所提供的信息,分析出数据的可靠性、周期性或其它干扰。
残差分析(resial analysis)就是通过残差所提供的信息,分析出数据的可靠性、周期性或其它干扰 。用于分析模型的假定正确与否的方法。所谓残差是指观测值与预测值(拟合值)之间的差,即是实际观察值与回归估计值的差。在回归分析中,测定值与按回归方程预测的值之差,以δ表示。残差δ遵从正态分布N(0,σ2)。
(δ-残差的均值)/残差的标准差,称为标准化残差,以δ*表示。δ*遵从标准正态分布N(0,1)。实验点的标准化残差落在(-2,2)区间以外的概率≤0.05。若某一实验点的标准化残差落在(-2,2)区间以外,可在95%置信度将其判为异常实验点,不参与回归线拟合。显然,有多少对数据,就有多少个残差。
热心网友 时间:2023-08-30 00:10
残差在数理统计中是指实际观察值与估计值(拟合值)之间的差。"残差"蕴含了有关模型基本假设的重要信息。如果回归模型正确的话, 我们可以将残差看作误差的观测值。
它应符合模型的假设条件,且具有误差的一些性质。利用残差所提供的信息,来考察模型假设的合理性及数据的可靠性称为残差分析。
在回归分析中,测定值与按回归方程预测的值之差,以δ表示。残差δ遵从正态分布N(0,σ2)。(δ-残差的均值)/残差的标准差,称为标准化残差,以δ*表示。δ*遵从标准正态分布N(0,1)。实验点的标准化残差落在(-2,2)区间以外的概率≤0.05。若某一实验点的标准化残差落在(-2,2)区间以外,可在95%置信度将其判为异常实验点,不参与回归直线拟合。
显然,有多少对数据,就有多少个残差。残差分析就是通过残差所提供的信息,分析出数据的可靠性、周期性或其它干扰。
热心网友 时间:2023-08-30 00:10
在数理统计中,残差是指实际观察值与估计值(拟合值)之间的差。热心网友 时间:2023-08-30 00:11
在统计分析中,残差指每个样本与样本均值的差值。