发布网友 发布时间:2022-11-10 20:13
共1个回答
热心网友 时间:2024-12-04 03:46
弗洛里-哈金斯晶格理论保留了小分子正规溶液理论的主要特点,只是对相应的混合熵作了修正,以适应高分子的特殊性。它还假定混合时没有体积变化,这些都与实际情况不符。
对应态原理说明,一对分子i和j之间的位能ε(rij)与它们之间的距离rij有关,它可以用一个普遍适用的位能函数Φ表示为: 式中ε*和r*是反映分子结构的特征参数,分别具有能量和长度的量纲。从这两个特征参数,又可以定义无量纲的对比温度,对比体积和对比压力这三个对比变量,将这些变量引入统计热力学的配分函数,即可得到状态方程,其具体形式只依赖于位能函数Φ的本质。 在二元混合物中,各不同组分间的相互作用可用六个特征参数描述。假设它们依从同一形式的位能函数 Φ,则可导得混合物的第二维利系数和混合时的体积变化。在原则上,从实验数据可以计算相异组分间的相互作用,但在实际上直接计算ε*和r*还是困难的,需要借助于各种简化了的模型。 状态方程理论应用于混合物时,其最大的成功在于它能说明混合时体积的改变,这一改变在两个组分的分子尺寸和相互作用差别较大时更为显著,过量体积常为负值。状态方程理论应用于高分子溶液时,可以正确地预计相互作用参数χ 的浓度依赖性并解释下临界溶解温度的存在。 标度理论 把铁磁体在居里点附近的相变理论应用于高分子链构象的处理。当铁磁体冷到居里点温度TC以下时,在没有外磁场下,从整体说没有磁矩,但在局部区域也有磁矩。与原子自旋取向相关的局部磁区的大小,即相关尺寸ξ的温度依赖性为: 式中τ为对比温度;v为一个特征幂数,此式在τ →0时成立。这个关系与一个孤立的柔性链高分子在良溶剂中的均方半随聚合度N 变化的情况相似,。与铁磁体相变理论的类比,可得出在d维晶格上的有排除体积效应的无规行走应符合v=3/(d+2)的结论。在三维时,v=3/5。标度理论只能得到两个量之间的标度关系,即其中一个量增大一倍时另一个量应增大多少倍的问题,也即找出幂数关系的数值。标度理论也适合于处理柔性链高分子浓溶液。对于良溶剂,目前已经得出的重要结论是:浓溶液渗透,式中c 是浓度;线团的均方半径随浓度的变化应服从的规律。但这些结果还有待更多的实验验证。